1
|
Schmidt A, Bittmann-Hennes B, Moncada D, Montero B. Self-Reinforced Biocomposites Made from Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV): An Innovative Approach to Sustainable Packaging Production through Melt Processing. ACS OMEGA 2024; 9:51073-51088. [PMID: 39758632 PMCID: PMC11696434 DOI: 10.1021/acsomega.4c05957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/01/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025]
Abstract
The production of self-reinforced composites allows for a targeted tailoring of the property profile for specific applications and offers the physical-mechanical advantages of a synergistic combination of the two components with a high value in terms of their end-of-life scenarios. This study deals with the preparation and evaluation of self-reinforced biocomposites of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with PHBV microparticles produced for the first time by industry-oriented melt processing. First, microparticles with a size of 4 μm were prepared and characterized by using the miniemulsion/evaporation technique. These microparticles were then incorporated into the PHBV matrix by extrusion and injection molding. Electron microscopy revealed particles in biocomposites. The results indicate heterogeneous nucleation, leading to higher crystallinity at higher melting temperatures. This leads to a slight embrittlement and an improvement of the barrier properties against oxygen and water vapor. These industrially produced biocomposites benefit from particles by showing, among other things, higher barrier properties while retaining their green character, making them promising and easily accessible candidates for future packaging applications.
Collapse
Affiliation(s)
- Anja Schmidt
- Grupo
de Polímeros, Centro de Investigación en Tecnologías
Navales e Industriales (CITENI), Departamento de Física y Ciencias
de la Tierra, Universidade da Coruña
(UDC), Campus Industrial
de Ferrol, 15471 Ferrol, Spain
| | - Birgit Bittmann-Hennes
- Leibniz-Institut
für Verbundwerkstoffe GmbH, Erwin-Schrödinger-Str. Geb. 58, 67663 Kaiserslautern, Germany
| | - Danny Moncada
- Grupo
de Polímeros, Centro de Investigación en Tecnologías
Navales e Industriales (CITENI), Departamento de Física y Ciencias
de la Tierra, Universidade da Coruña
(UDC), Campus Industrial
de Ferrol, 15471 Ferrol, Spain
| | - Belén Montero
- Grupo
de Polímeros, Centro de Investigación en Tecnologías
Navales e Industriales (CITENI), Departamento de Física y Ciencias
de la Tierra, Universidade da Coruña
(UDC), Campus Industrial
de Ferrol, 15471 Ferrol, Spain
| |
Collapse
|
2
|
Yan J, Wu T, Zhang J, Gao Y, Wu JM, Wang S. Revolutionizing the female reproductive system research using microfluidic chip platform. J Nanobiotechnology 2023; 21:490. [PMID: 38111049 PMCID: PMC10729361 DOI: 10.1186/s12951-023-02258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023] Open
Abstract
Comprehensively understanding the female reproductive system is crucial for safeguarding fertility and preventing diseases concerning women's health. With the capacity to simulate the intricate physio- and patho-conditions, and provide diagnostic platforms, microfluidic chips have fundamentally transformed the knowledge and management of female reproductive health, which will ultimately promote the development of more effective assisted reproductive technologies, treatments, and drug screening approaches. This review elucidates diverse microfluidic systems in mimicking the ovary, fallopian tube, uterus, placenta and cervix, and we delve into the culture of follicles and oocytes, gametes' manipulation, cryopreservation, and permeability especially. We investigate the role of microfluidics in endometriosis and hysteromyoma, and explore their applications in ovarian cancer, endometrial cancer and cervical cancer. At last, the current status of assisted reproductive technology and integrated microfluidic devices are introduced briefly. Through delineating the multifarious advantages and challenges of the microfluidic technology, we chart a definitive course for future research in the woman health field. As the microfluidic technology continues to evolve and advance, it holds great promise for revolutionizing the diagnosis and treatment of female reproductive health issues, thus propelling us into a future where we can ultimately optimize the overall wellbeing and health of women everywhere.
Collapse
Affiliation(s)
- Jinfeng Yan
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China
| | - Tong Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
| | - Jinjin Zhang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
| | - Yueyue Gao
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
| | - Jia-Min Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China.
| | - Shixuan Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
3
|
Yimyai T, Crespy D, Rohwerder M. Corrosion-Responsive Self-Healing Coatings. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300101. [PMID: 36939547 DOI: 10.1002/adma.202300101] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Organic coatings are one of the most popular and powerful strategies for protecting metals against corrosion. They can be applied in different ways, such as by dipping, spraying, electrophoresis, casting, painting, or flow coating. They offer great flexibility of material designs and cost effectiveness. Moreover, self-healing has evolved as a new research topic for protective organic coatings in the last two decades. Responsive materials play a crucial role in this new research field. However, for targeting the development of high-performance self-healing coatings for corrosion protection, it is not sufficient just to focus on smart responsive materials and suitable active agents for self-healing. A better understanding of how coatings can react on different stimuli induced by corrosion, how these stimuli can spread in the coating, and how the released agents can reach the corroding defect is also of high importance. Such knowledge would allow the design of coatings that are optimized for specific applications. Herein, the requirements and possibilities from the corrosion and synthesis perspectives for designing materials for preparing self-healing coatings for corrosion protection are discussed.
Collapse
Affiliation(s)
- Tiwa Yimyai
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Michael Rohwerder
- Max-Planck-Institut für Eisenforschung GmbH, 40237, Düsseldorf, Germany
| |
Collapse
|
4
|
Synthesis, characterization, and computational study of aggregates from amphiphilic calix[6]arenes. Effect of encapsulation on degradation kinetics of curcumin. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Pulingam T, Foroozandeh P, Chuah JA, Sudesh K. Exploring Various Techniques for the Chemical and Biological Synthesis of Polymeric Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:576. [PMID: 35159921 PMCID: PMC8839423 DOI: 10.3390/nano12030576] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 12/12/2022]
Abstract
Nanoparticles (NPs) have remarkable properties for delivering therapeutic drugs to the body's targeted cells. NPs have shown to be significantly more efficient as drug delivery carriers than micron-sized particles, which are quickly eliminated by the immune system. Biopolymer-based polymeric nanoparticles (PNPs) are colloidal systems composed of either natural or synthetic polymers and can be synthesized by the direct polymerization of monomers (e.g., emulsion polymerization, surfactant-free emulsion polymerization, mini-emulsion polymerization, micro-emulsion polymerization, and microbial polymerization) or by the dispersion of preformed polymers (e.g., nanoprecipitation, emulsification solvent evaporation, emulsification solvent diffusion, and salting-out). The desired characteristics of NPs and their target applications are determining factors in the choice of method used for their production. This review article aims to shed light on the different methods employed for the production of PNPs and to discuss the effect of experimental parameters on the physicochemical properties of PNPs. Thus, this review highlights specific properties of PNPs that can be tailored to be employed as drug carriers, especially in hospitals for point-of-care diagnostics for targeted therapies.
Collapse
Affiliation(s)
| | | | | | - Kumar Sudesh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (T.P.); (P.F.); (J.-A.C.)
| |
Collapse
|
6
|
New Analytical Approaches for Effective Quantification and Identification of Nanoplastics in Environmental Samples. Processes (Basel) 2021. [DOI: 10.3390/pr9112086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Nanoplastics (NPs) are a rapidly developing subject that is relevant in environmental and food research, as well as in human toxicity, among other fields. NPs have recently been recognized as one of the least studied types of marine litter, but potentially one of the most hazardous. Several studies are now being reported on NPs in the environment including surface water and coast, snow, soil and in personal care products. However, the extent of contamination remains largely unknown due to fundamental challenges associated with isolation and analysis, and therefore, a methodological gap exists. This article summarizes the progress in environmental NPs analysis and makes a critical assessment of whether methods from nanoparticles analysis could be adopted to bridge the methodological gap. This review discussed the sample preparation and preconcentration protocol for NPs analysis and also examines the most appropriate approaches available at the moment, ranging from physical to chemical. This study also discusses the difficulties associated with improving existing methods and developing new ones. Although microscopical techniques are one of the most often used ways for imaging and thus quantification, they have the drawback of producing partial findings as they can be easily mixed up as biomolecules. At the moment, the combination of chemical analysis (i.e., spectroscopy) and newly developed alternative methods overcomes this limitation. In general, multiple analytical methods used in combination are likely to be needed to correctly detect and fully quantify NPs in environmental samples.
Collapse
|
7
|
|
8
|
Tahir A, Shabir Ahmad R, Imran M, Ahmad MH, Kamran Khan M, Muhammad N, Nisa MU, Tahir Nadeem M, Yasmin A, Tahir HS, Zulifqar A, Javed M. Recent approaches for utilization of food components as nano-encapsulation: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1953067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ali Tahir
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Rabia Shabir Ahmad
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Muhammad Imran
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Muhammad Haseeb Ahmad
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Muhammad Kamran Khan
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Niaz Muhammad
- National Agriculture Education College, Kabul, Afghanistan
| | - Mahr Un Nisa
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad
| | - Muhammad Tahir Nadeem
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Adeela Yasmin
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Hafiza Saima Tahir
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Aliza Zulifqar
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Miral Javed
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
9
|
Machado TO, Beckers SJ, Fischer J, Sayer C, de Araújo PHH, Landfester K, Wurm FR. Cellulose nanocarriers via miniemulsion allow Pathogen-Specific agrochemical delivery. J Colloid Interface Sci 2021; 601:678-688. [PMID: 34091315 DOI: 10.1016/j.jcis.2021.05.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
The current spraying of agrochemicals is unselective and ineffective, consuming a high amount of fungicides, which endangers the environment and human health. Cellulose-based nanocarriers (NCs) are a promising tool in sustainable agriculture and suitable vehicles for stimuli-responsive release of agrochemicals to target cellulase-segregating fungi, which cause severe plant diseases such as Apple Canker. Herein, cellulose was modified with undec-10-enoic acid to a hydrophobic and cross-linkable derivative, from which NCs were prepared via thiol-ene addition in miniemulsion. During the crosslinking reaction, the NCs were loaded in situ with hydrophobic fungicides, Captan and Pyraclostrobin. NCs with average sizes ranging from 200 to 300 nm and an agrochemical-load of 20 wt% were obtained. Cellulose-degrading fungi, e.g. Neonectria. ditissima which is responsible for Apple Canker, lead to the release of fungicides from the aqueous NC dispersions suppressing fungal growth. In contrast, the non-cellulase segregating fungi, e.g. Cylindrocladium buxicola, do not degrade the agrochemical-loaded NCs. This selective action against Apple Canker fungi, N. ditissima, proves the efficacy of NC-mediated drug delivery triggered by degradation in the exclusive presence of cellulolytic fungi. Cellulose NCs represent a sustainable alternative to the current unselective spraying of agrochemicals that treats many crop diseases ineffectively.
Collapse
Affiliation(s)
- Thiago O Machado
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC 88040 900, Brazil
| | - Sebastian J Beckers
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jochen Fischer
- Institute for Biotechnology and Drug Research, Erwin-Schrödinger-Str. 56, 67663 Kaiserslautern, Germany
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC 88040 900, Brazil
| | - Pedro H H de Araújo
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC 88040 900, Brazil
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Frederik R Wurm
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Sustainable Polymer Chemistry Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, 7500 AE Enschede, the Netherlands.
| |
Collapse
|
10
|
Theerasilp M, Crespy D. Halochromic Polymer Nanosensors for Simple Visual Detection of Local pH in Coatings. NANO LETTERS 2021; 21:3604-3610. [PMID: 33818088 DOI: 10.1021/acs.nanolett.1c00620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Replacing metallic structures before critical damage is beneficial for safety and for saving energy and resources. One simple approach consists in visually monitoring the early stage of corrosion, and related change of pH, of coated metals. We prepare smart nanoparticle additives for coatings which act as a pH sensor. The nanoparticles are formed with a terpolymer containing two dyes as side chains, acting as donor and acceptor for a FRET process. Real time monitoring of the extent of localized corrosion on metallic structures is then carried out with a smartphone camera. Colored pH mapping can be then manually retrieved by an operator or automatically recorded by a surveillance camera.
Collapse
Affiliation(s)
- Man Theerasilp
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| |
Collapse
|
11
|
|
12
|
Shaaban AFF, Metwally AM, Azab MM, Mahmoud AA, Ali HM. Synthesis, characterization, morphology and adsorption performance towards Cu+2 ions of nano-sized homopolymers of o-aminophenol poly(o-AP). JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Sharifimehr MR, Ayoubi K, Mohajerani E. Fabrication, morphological investigation and spectral characterization of nano-encapsulated azo dye-doped nematic liquid crystals. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Canziani H, Chiera S, Schuffenhauer T, Kopp SP, Metzger F, Bück A, Schmidt M, Vogel N. Bottom-Up Design of Composite Supraparticles for Powder-Based Additive Manufacturing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002076. [PMID: 32578351 DOI: 10.1002/smll.202002076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/06/2020] [Indexed: 05/16/2023]
Abstract
Additive manufacturing promises high flexibility and customized product design. Powder bed fusion processes use a laser to melt a polymer powder at predefined locations and iterate the scheme to build 3D objects. The design of flowable powders is a critical parameter for a successful fabrication process that currently limits the choice of available materials. Here, a bottom-up process is introduced to fabricate tailored polymer- and composite supraparticles for powder-based additive manufacturing processes by controlled aggregation of colloidal primary particles. These supraparticles exhibit a near-spherical shape and tailored composition, morphology, and surface roughness. These parameters can be precisely controlled by the mixing and size ratio of the primary particles. Polystyrene/silica composite particles are chosen as a model system to establish structure-property relations connecting shape, morphology, and surface roughness to the adhesion within the powder, which is accessed by tensile strength measurements. The adhesive properties are then connected to powder flowability and it is shown that the resulting powders allow the formation of dense powder films with uniform coverage. Finally, successful powder bed fusion is demonstrated by producing macroscopic single layer specimens with uniform distribution of nanoscale silica additives.
Collapse
Affiliation(s)
- Herbert Canziani
- Institute of Particle Technology, Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstraße 4, Erlangen, 91058, Germany
- Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-University Erlangen-Nürnberg, Haberstraße 9a, Erlangen, 91058, Germany
| | - Salvatore Chiera
- Institute of Particle Technology, Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstraße 4, Erlangen, 91058, Germany
- Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-University Erlangen-Nürnberg, Haberstraße 9a, Erlangen, 91058, Germany
| | - Thomas Schuffenhauer
- Bayerisches Laser Zentrum GmbH, Konrad-Zuse-Straße 2-6, Erlangen, 91052, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Paul-Gordan-Straße 6, Erlangen, 91052, Germany
| | - Sebastian-Paul Kopp
- Bayerisches Laser Zentrum GmbH, Konrad-Zuse-Straße 2-6, Erlangen, 91052, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Paul-Gordan-Straße 6, Erlangen, 91052, Germany
| | - Florian Metzger
- Institute of Particle Technology, Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstraße 4, Erlangen, 91058, Germany
| | - Andreas Bück
- Institute of Particle Technology, Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstraße 4, Erlangen, 91058, Germany
- Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-University Erlangen-Nürnberg, Haberstraße 9a, Erlangen, 91058, Germany
| | - Michael Schmidt
- Bayerisches Laser Zentrum GmbH, Konrad-Zuse-Straße 2-6, Erlangen, 91052, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Paul-Gordan-Straße 6, Erlangen, 91052, Germany
- Institute of Photonic Technologies, Friedrich-Alexander-University Erlangen-Nürnberg, Konrad-Zuse-Straße 3-5, Erlangen, 91052, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstraße 4, Erlangen, 91058, Germany
- Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-University Erlangen-Nürnberg, Haberstraße 9a, Erlangen, 91058, Germany
| |
Collapse
|
15
|
Kosco J, Bidwell M, Cha H, Martin T, Howells CT, Sachs M, Anjum DH, Gonzalez Lopez S, Zou L, Wadsworth A, Zhang W, Zhang L, Tellam J, Sougrat R, Laquai F, DeLongchamp DM, Durrant JR, McCulloch I. Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles. NATURE MATERIALS 2020; 19:559-565. [PMID: 32015530 PMCID: PMC7558859 DOI: 10.1038/s41563-019-0591-1] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/16/2019] [Indexed: 05/21/2023]
Abstract
Photocatalysts formed from a single organic semiconductor typically suffer from inefficient intrinsic charge generation, which leads to low photocatalytic activities. We demonstrate that incorporating a heterojunction between a donor polymer (PTB7-Th) and non-fullerene acceptor (EH-IDTBR) in organic nanoparticles (NPs) can result in hydrogen evolution photocatalysts with greatly enhanced photocatalytic activity. Control of the nanomorphology of these NPs was achieved by varying the stabilizing surfactant employed during NP fabrication, converting it from a core-shell structure to an intermixed donor/acceptor blend and increasing H2 evolution by an order of magnitude. The resulting photocatalysts display an unprecedentedly high H2 evolution rate of over 60,000 µmol h-1 g-1 under 350 to 800 nm illumination, and external quantum efficiencies over 6% in the region of maximum solar photon flux.
Collapse
Affiliation(s)
- Jan Kosco
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Thuwal, Saudi Arabia.
| | - Matthew Bidwell
- Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London, UK
| | - Hyojung Cha
- Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London, UK
| | - Tyler Martin
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Calvyn T Howells
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Thuwal, Saudi Arabia
| | - Michael Sachs
- Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London, UK
| | - Dalaver H Anjum
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Thuwal, Saudi Arabia
| | - Sandra Gonzalez Lopez
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Thuwal, Saudi Arabia
| | - Lingyu Zou
- Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London, UK
| | - Andrew Wadsworth
- Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London, UK
| | - Weimin Zhang
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Thuwal, Saudi Arabia
| | - Lisheng Zhang
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Thuwal, Saudi Arabia
| | - James Tellam
- ISIS, STFC, Rutherford Appleton Laboratory, Chilton, UK
| | - Rachid Sougrat
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Thuwal, Saudi Arabia
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Thuwal, Saudi Arabia
| | - Dean M DeLongchamp
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - James R Durrant
- Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London, UK
| | - Iain McCulloch
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Thuwal, Saudi Arabia.
- Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London, UK.
| |
Collapse
|
16
|
Synthesis, characterization, morphology and adsorption performance towards cu+2 ions of nano-sized copolymers of anthranilic acid and o-aminophenol poly(anthranilic acid-co-o-aminophenol). JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-019-1980-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Doan-Nguyen TP, Natsathaporn P, Jenjob R, Niyom Y, Ittisanronnachai S, Flood A, Crespy D. Regulating Payload Release from Hybrid Nanocapsules with Dual Silica/Polycaprolactone Shells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11389-11396. [PMID: 31394031 DOI: 10.1021/acs.langmuir.9b01176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We describe a facile strategy to synthesize hybrid nanocapsules with an oil core for hindering interactions between payloads and silica shell. Polycaprolactone/silica nanocapsules are synthesized by an interfacial sol-gel process occurring simultaneously with internal phase separation of the polymer produced by a miniemulsion-solvent evaporation technique. The localization of the polycaprolactone in the nanocapsules is depending on the ratio between polymer and silica. Formation of hybrid nanocapsules is found to significantly hinder interactions of drugs such as ibuprofen and carbamazepine with the silica surface.
Collapse
Affiliation(s)
- Thao P Doan-Nguyen
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology (VISTEC) , Rayong 21210 , Thailand
- Faculty of Pharmacy , Ton Duc Thang University , Ho Chi Minh City 700000 , Vietnam
| | - Papada Natsathaporn
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology (VISTEC) , Rayong 21210 , Thailand
| | - Ratchapol Jenjob
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology (VISTEC) , Rayong 21210 , Thailand
| | - Yupaporn Niyom
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering , Vidyasirimedhi Institute of Science and Technology (VISTEC) , Rayong 21210 , Thailand
| | - Somlak Ittisanronnachai
- Frontier Research Center , Vidyasirimedhi Institute of Science and Technology (VISTEC) , Rayong , 21210 , Thailand
| | - Adrian Flood
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering , Vidyasirimedhi Institute of Science and Technology (VISTEC) , Rayong 21210 , Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology (VISTEC) , Rayong 21210 , Thailand
| |
Collapse
|
18
|
Niyom Y, Phakkeeree T, Flood A, Crespy D. Synergy between polymer crystallinity and nanoparticles size for payloads release. J Colloid Interface Sci 2019; 550:139-146. [DOI: 10.1016/j.jcis.2019.04.085] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 11/29/2022]
|
19
|
Zhang X, Liu J, Li X, Li F, Lee RJ, Sun F, Li Y, Liu Z, Teng L. Trastuzumab-Coated Nanoparticles Loaded With Docetaxel for Breast Cancer Therapy. Dose Response 2019; 17:1559325819872583. [PMID: 31523204 PMCID: PMC6728688 DOI: 10.1177/1559325819872583] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 01/06/2023] Open
Abstract
Docetaxel (DTX) is commonly used for breast cancer treatment. Tween 80 used for DTX dissolution in its clinical formulation causes severe hypersensitivity and other adverse reactions. In this study, trastuzumab (Tmab)-coated lipid-polymer hybrid nanoparticles (PLNs) were prepared, composed of poly (d, l-lactide-co-glycolide), PLGA; polyethylenimine (PEI); and lipids. The PLGA/PEI/lipid formed a hydrophobic core, while Tmab was electrostatically adsorbed on the surface of the PLNs as a ligand that targets human epidermal growth factor receptor 2 (HER2)-positive breast cancer cells. The resulting PLNs, electrostatically adsorbed Tmab-bearing PLGA/PEI/lipid nanoparticles (eTmab-PPLNs), had a mean particle size of 217.4 ± 13.36 nm, a ζ potential of 0.056 ± 0.315 mV, and good stability. In vitro, the eTmab-PPLNs showed increased cytotoxicity in HER2-postive BT474 cells but not in HER2-negative MCF7 cells. Studies of the ability of eTmab-PPLNs to target HER2 were performed. The uptake of eTmab-PPLNs was shown to be dependent on HER2 expression level. Therefore, eTmab-PPLNs provide a promising therapeutic for the treatment of breast cancer.
Collapse
Affiliation(s)
- Xueyan Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin,
China
| | - Jiaxin Liu
- School of Life Sciences, Jilin University, Changchun, Jilin,
China
| | - Xiangyu Li
- School of Life Sciences, Jilin University, Changchun, Jilin,
China
| | - Fang Li
- School of Life Sciences, Jilin University, Changchun, Jilin,
China
| | - Robert J. Lee
- School of Life Sciences, Jilin University, Changchun, Jilin,
China
- College of Pharmacy, The Ohio State University, Columbus, OH,
USA
| | - Fengying Sun
- School of Life Sciences, Jilin University, Changchun, Jilin,
China
| | - Youxin Li
- School of Life Sciences, Jilin University, Changchun, Jilin,
China
| | - Zongyu Liu
- School of Life Sciences, Jilin University, Changchun, Jilin,
China
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, Jilin,
China
| |
Collapse
|
20
|
Li Y, Zhao X, Liu Y, Yang J, Zhang Q, Wang L, Wu W, Yang Q, Liu B. Melatonin loaded with bacterial cellulose nanofiber by Pickering-emulsion solvent evaporation for enhanced dissolution and bioavailability. Int J Pharm 2019; 559:393-401. [PMID: 30731257 DOI: 10.1016/j.ijpharm.2019.01.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/02/2019] [Accepted: 01/26/2019] [Indexed: 11/26/2022]
Abstract
The objective of the present work aimed to explore the potential of bacterial cellulose (BC) for oral delivery of melatonin (MLT), a natural hormone that faces problems of low solubility and oral bioavailability. BC was hydrolyzed by sulfuric acid followed by the oxidation to prepare bacterial cellulose nanofiber suspension (BCNs). Melatonin-loaded bacterial cellulose nanofiber suspension (MLT-BCNs) was prepared by emulsion solvent evaporation method. The properties of freeze-dried BCs and MLT-BCNs were studied by Fluorescence microscopy (FM), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermo gravimetric (TG). The results indicated that the fibers in BCNs became short and thin compared with BC, MLT in MLT-BCNs was uniformly distributed, both BCNs and MLT-BCNs have good thermodynamic stability. The MLT-BCNs showed more rapid dissolution MLT rates compared to the commercially available MLT in SGF and SIF, the dissolution of the cumulative release rate was about 2.1 times of the commercially available MLT. The oral bioavailability of MLT-BCNs in rat was about 2.4 times higher than the commercially available MLT. Thus, MLT-BCNs could act as promising delivery with enhanced dissolution and bioavailability for MLT after oral administration.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heilongjiang, China
| | - Xiuhua Zhao
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heilongjiang, China.
| | - Yanjie Liu
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heilongjiang, China
| | - Jianhang Yang
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heilongjiang, China
| | - Qian Zhang
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heilongjiang, China
| | - Lingling Wang
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heilongjiang, China
| | - Weiwei Wu
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heilongjiang, China
| | - Qilei Yang
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heilongjiang, China
| | - Bingxue Liu
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heilongjiang, China
| |
Collapse
|
21
|
Iyisan B, Landfester K. Modular Approach for the Design of Smart Polymeric Nanocapsules. Macromol Rapid Commun 2018; 40:e1800577. [DOI: 10.1002/marc.201800577] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/14/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Banu Iyisan
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | | |
Collapse
|
22
|
Redox-stimuli-responsive drug delivery systems with supramolecular ferrocenyl-containing polymers for controlled release. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Abstract
Incorporating labile bonds inside polymer backbone and side chains yields interesting polymer materials that are responsive to change of environmental stimuli. Drugs can be conjugated to various polymers through different conjugation linkages and spacers. One of the key factors influencing the release profile of conjugated drugs is the hydrolytic stability of the conjugated linkage. Generally, the hydrolysis of acid-labile linkages, including acetal, imine, hydrazone, and to some extent β-thiopropionate, are relatively fast and the conjugated drug can be completely released in the range of several hours to a few days. The cleavage of ester linkages are usually slow, which is beneficial for continuous and prolonged release. Another key structural factor is the water solubility of polymer-drug conjugates. Generally, the release rate from highly water-soluble prodrugs is fast. In prodrugs with large hydrophobic segments, the hydrophobic drugs are usually located in the hydrophobic core of micelles and nanoparticles, which limits the access to the water, hence lowering significantly the hydrolysis rate. Finally, self-immolative polymers are also an intriguing new class of materials. New synthetic pathways are needed to overcome the fact that much of the small molecules produced upon degradation are not active molecules useful for biomedical applications.
Collapse
Affiliation(s)
- Farzad Seidi
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology , Rayong 21210 , Thailand
| | - Ratchapol Jenjob
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology , Rayong 21210 , Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology , Rayong 21210 , Thailand
| |
Collapse
|
24
|
Lakkireddy HR, Bazile D. Building the design, translation and development principles of polymeric nanomedicines using the case of clinically advanced poly(lactide(glycolide))-poly(ethylene glycol) nanotechnology as a model: An industrial viewpoint. Adv Drug Deliv Rev 2016; 107:289-332. [PMID: 27593265 DOI: 10.1016/j.addr.2016.08.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/19/2016] [Accepted: 08/27/2016] [Indexed: 12/16/2022]
Abstract
The design of the first polymeric nanoparticles could be traced back to the 1970s, and has thereafter received considerable attention, as evidenced by the significant increase of the number of articles and patents in this area. This review article is an attempt to take advantage of the existing literature on the clinically tested and commercialized biodegradable PLA(G)A-PEG nanotechnology as a model to propose quality building and outline translation and development principles for polymeric nano-medicines. We built such an approach from various building blocks including material design, nano-assembly - i.e. physicochemistry of drug/nano-object association in the pharmaceutical process, and release in relevant biological environment - characterization and identification of the quality attributes related to the biopharmaceutical properties. More specifically, as envisaged in a translational approach, the reported data on PLA(G)A-PEG nanotechnology have been structured into packages to evidence the links between the structure, physicochemical properties, and the in vitro and in vivo performances of the nanoparticles. The integration of these bodies of knowledge to build the CMC (Chemistry Manufacturing and Controls) quality management strategy and finally support the translation to proof of concept in human, and anticipation of the industrialization takes into account the specific requirements and biopharmaceutical features attached to the administration route. From this approach, some gaps are identified for the industrial development of such nanotechnology-based products, and the expected improvements are discussed. The viewpoint provided in this article is expected to shed light on design, translation and pharmaceutical development to realize their full potential for future clinical applications.
Collapse
|
25
|
Stabilization of Inverse Miniemulsions by Silyl-Protected Homopolymers. Polymers (Basel) 2016; 8:polym8080303. [PMID: 30974578 PMCID: PMC6431836 DOI: 10.3390/polym8080303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022] Open
Abstract
Inverse (water-in-oil) miniemulsions are an important method to encapsulate hydrophilic payloads such as oligonucleotides or peptides. However, the stabilization of inverse miniemulsions usually requires block copolymers that are difficult to synthesize and/or cannot be easily removed after transfer from a hydrophobic continuous phase to an aqueous continuous phase. We describe here a new strategy for the synthesis of a surfactant for inverse miniemulsions by radical addition⁻fragmentation chain transfer (RAFT) polymerization, which consists in a homopolymer with triisopropylsilyl protecting groups. The protecting groups ensure the efficient stabilization of the inverse (water-in-oil, w/o) miniemulsions. Nanocapsules can be formed and the protecting group can be subsequently cleaved for the re-dispersion of nanocapsules in an aqueous medium with a minimal amount of additional surfactant.
Collapse
|
26
|
Abstract
Hierarchical structure is a key feature explaining the superior properties of many materials in nature. Fibers usually serve in textiles, for structural reinforcement, or as support for other materials, whereas spherical micro- and nanoobjects can be either highly functional or also used as fillers to reinforce structure materials. Combining nanocontainers with fibers in one single object has been used to increase the functionality of fibers, for example, antibacterial and thermoregulation, when the advantageous properties given by the encapsulated materials inside the containers are transferred to the fibers. Herein we focus our discussion on how the hierarchical structure composed of nanocontainers in nanofibers yields materials displaying advantages of both types of materials and sometimes synergetical effects. Such materials can be produced by first carefully designing nanocontainers with defined morphology and chemistry and subsequently electrospinning them to fabricate nanofibers. This method, called colloid-electrospinning, allows for marrying the properties of nanocontainers and nanofibers. The obtained fibers could be successfully applied in different fields such as catalysis, optics, energy conversion and production, and biomedicine. The miniemulsion process is a convenient approach for the encapsulation of hydrophobic or hydrophilic payloads in nanocontainers. These nanocontainers can be embedded in fibers by the colloid-electrospinning technique. The combination of nanocontainers with nanofibers by colloid-electrospinning has several advantages. (1) The fiber matrix serves as support for the embedded nanocontainers. For example, through combining catalysts nanoparticles with fiber networks, the catalysts can be easily separated from the reaction media and handled visually. This combination is beneficial for the reuse of the catalyst and the purification of products. (2) Electrospun nanofibers containing nanocontainers offer the active agents inside the nanocontainers a double protection by both the fiber matrix and the nanocontainers. Since the polymer of the fibers and the polymer of the nanocontainers have usually opposite polarities, the encapsulated substance, for example, catalysts, dyes, or drugs, can be protected against a large variety of environmental influences. (3) Electrospun nanofibers exhibit unique advantages for tissue engineering and drug delivery that are a structural similarity to the extracellular matrix of biological tissues, large specific surface area, high and interconnected porosity which enhances cell adhesion, proliferation, drug loading, and mass transfer properties, as well as the flexibility in selecting the raw materials. Moreover, the nanocontainer-in-nanofiber structure allows multidrug loading and programmable release of each drug, which are very important to achieve synergistic effects in tissue engineering and disease therapy. The advantages offered by these materials encourage us to further understand the relationship between colloidal properties and fibers, to predict the morphology and properties of the fibers obtained by colloid-electrospinning, and to explore new possible combination of properties offered by nanoparticles and nanofibers.
Collapse
Affiliation(s)
- Shuai Jiang
- Max Planck Institute for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Li-Ping Lv
- Max Planck Institute for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Daniel Crespy
- Max Planck Institute for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| |
Collapse
|
27
|
Crespy D, Landfester K, Fickert J, Rohwerder M. Self-Healing for Anticorrosion Based on Encapsulated Healing Agents. SELF-HEALING MATERIALS 2016. [DOI: 10.1007/12_2015_342] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Behzadi S, Gallei M, Elbert J, Appold M, Glasser G, Landfester K, Crespy D. A triblock terpolymer vs. blends of diblock copolymers for nanocapsules addressed by three independent stimuli. Polym Chem 2016. [DOI: 10.1039/c6py00344c] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The chemical structure of triblock terpolymers is exploited to achieve polymer nanocapsules responsive to three different stimuli.
Collapse
Affiliation(s)
- Shahed Behzadi
- Max Planck Institute for Polymer Research
- D-55128 Mainz
- Germany
| | - Markus Gallei
- Macromolecular Chemistry Department
- Technische Universität Darmstadt
- D-64287 Darmstadt
- Germany
| | - Johannes Elbert
- Macromolecular Chemistry Department
- Technische Universität Darmstadt
- D-64287 Darmstadt
- Germany
| | - Michael Appold
- Macromolecular Chemistry Department
- Technische Universität Darmstadt
- D-64287 Darmstadt
- Germany
| | - Gunnar Glasser
- Max Planck Institute for Polymer Research
- D-55128 Mainz
- Germany
| | | | - Daniel Crespy
- Max Planck Institute for Polymer Research
- D-55128 Mainz
- Germany
- Vidyasirimedhi Institute of Science and Technology
- 555 Moo 1 Payupnai, Wangchan
| |
Collapse
|
29
|
Ezaki N, Watanabe Y, Mori H. Nonaqueous Dispersion Formed by an Emulsion Solvent Evaporation Method Using Block-Random Copolymer Surfactant Synthesized by RAFT Polymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11399-11408. [PMID: 26421355 DOI: 10.1021/acs.langmuir.5b02358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
As surfactants for preparation of nonaqueous microcapsule dispersions by the emulsion solvent evaporation method, three copolymers composed of stearyl methacrylate (SMA) and glycidyl methacrylate (GMA) with different monomer sequences (i.e., random, block, and block-random) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Despite having the same comonomer composition, the copolymers exhibited different functionality as surfactants for creating emulsions with respective dispersed and continuous phases consisting of methanol and isoparaffin solvent. The optimal monomer sequence for the surfactant was determined based on the droplet sizes and the stabilities of the emulsions created using these copolymers. The block-random copolymer led to an emulsion with better stability than obtained using the random copolymer and a smaller droplet size than achieved with the block copolymer. Modification of the epoxy group of the GMA unit by diethanolamine (DEA) further decreased the droplet size, leading to higher stability of the emulsion. The DEA-modified block-random copolymer gave rise to nonaqueous microcapsule dispersions after evaporation of methanol from the emulsions containing colored dyes in their dispersed phases. These dispersions exhibited high stability, and the particle sizes were small enough for application to the inkjet printing process.
Collapse
Affiliation(s)
- Naofumi Ezaki
- Graduate School of Science and Engineering, Yamagata University , 4-3-16, Jonan, Yonezawa 992-8510, Japan
- RISO KAGAKU CORPORATION, 2-8-1 Gakuen-minami, Tsukuba-shi, Ibaraki 305-0818, Japan
| | - Yoshifumi Watanabe
- RISO KAGAKU CORPORATION, 2-8-1 Gakuen-minami, Tsukuba-shi, Ibaraki 305-0818, Japan
| | - Hideharu Mori
- Graduate School of Science and Engineering, Yamagata University , 4-3-16, Jonan, Yonezawa 992-8510, Japan
| |
Collapse
|
30
|
Zhao Y, Berger R, Landfester K, Crespy D. Double Redox-Responsive Release of Encoded and Encapsulated Molecules from Patchy Nanocapsules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2995-9. [PMID: 25712754 DOI: 10.1002/smll.201402521] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/13/2014] [Indexed: 05/21/2023]
Abstract
Redox-responsive nanocapsules with surface regularities are presented. Two functional molecules are loaded in the nanocapsules. One molecule is chemically encoded in the capsule shell via a disulfide bond while the other one is physically entrapped in the capsule core. External reducing trigger can induce cascade release of the two payloads.
Collapse
Affiliation(s)
- Yi Zhao
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Rüdiger Berger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Daniel Crespy
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
31
|
Zhao Y, Lv LP, Jiang S, Landfester K, Crespy D. Advanced stimuli-responsive polymer nanocapsules with enhanced capabilities for payloads delivery. Polym Chem 2015. [DOI: 10.1039/c5py00323g] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent progress in the design, preparation, and application of stimuli-responsive polymer nanocapsules with enhanced capabilities for payloads delivery are reviewed.
Collapse
Affiliation(s)
- Yi Zhao
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Li-Ping Lv
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Shuai Jiang
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | | | - Daniel Crespy
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| |
Collapse
|
32
|
Urban M, Freisinger B, Ghazy O, Staff R, Landfester K, Crespy D, Musyanovych A. Polymer Janus Nanoparticles with Two Spatially Segregated Functionalizations. Macromolecules 2014. [DOI: 10.1021/ma5013545] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Markus Urban
- Max Planck Institute
for Polymer Research, Ackermannweg
10, Mainz 55128, Germany
| | - Birger Freisinger
- Max Planck Institute
for Polymer Research, Ackermannweg
10, Mainz 55128, Germany
| | - Omayma Ghazy
- Institute
of Organic Chemistry, Macromolecular Chemistry and Organic Materials, University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| | - Roland Staff
- Max Planck Institute
for Polymer Research, Ackermannweg
10, Mainz 55128, Germany
| | - Katharina Landfester
- Max Planck Institute
for Polymer Research, Ackermannweg
10, Mainz 55128, Germany
| | - Daniel Crespy
- Max Planck Institute
for Polymer Research, Ackermannweg
10, Mainz 55128, Germany
| | - Anna Musyanovych
- Max Planck Institute
for Polymer Research, Ackermannweg
10, Mainz 55128, Germany
| |
Collapse
|
33
|
Staff RH, Gallei M, Landfester K, Crespy D. Hydrophobic Nanocontainers for Stimulus-Selective Release in Aqueous Environments. Macromolecules 2014. [DOI: 10.1021/ma501233y] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Roland H. Staff
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Markus Gallei
- Ernst-Berl-Institute
for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Daniel Crespy
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| |
Collapse
|
34
|
Abstract
The use of polymers from natural resources can bring many benefits for novel polymeric nanoparticle systems. Such polymers have a variety of beneficial properties such as biodegradability and biocompatibility, they are readily available on large scale and at low cost. As the amount of fossil fuels decrease, their application becomes more interesting even if characterization is in many cases more challenging due to structural complexity, either by broad distribution of their molecular weights (polysaccharides, polyesters, lignin) or by complex structure (proteins, lignin). This review summarizes different sources and methods for the preparation of biopolymer-based nanoparticle systems for various applications.
Collapse
Affiliation(s)
- Frederik R. Wurm
- Physical Chemistry of Polymers, Max Planck Institute for Polymer ResearchMainz, Germany
| | - Clemens K. Weiss
- Life Sciences and Engineering, University of Applied Sciences BingenBingen, Germany
| |
Collapse
|
35
|
Staff RH, Willersinn J, Musyanovych A, Landfester K, Crespy D. Janus nanoparticles with both faces selectively functionalized for click chemistry. Polym Chem 2014. [DOI: 10.1039/c4py00085d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|