1
|
Wang S, Lv T, Chen Q, Yang Y, Xu L, Zhang X, Wang E, Hu X, Liu Y. Transcriptome sequencing and lncRNA-miRNA-mRNA network construction in cardiac fibrosis and heart failure. Bioengineered 2022; 13:7118-7133. [PMID: 35235759 PMCID: PMC8974171 DOI: 10.1080/21655979.2022.2045839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cardiac fibrosis (CF) and heart failure (HF) are common heart diseases, and severe CF can lead to HF. In this study, we tried to find their common potential molecular markers, which may help the diagnosis and treatment of CF and HF. RNA library construction and high-throughput sequencing were performed. The DESeq2 package in R was used to screen differentially expressed mRNAs (DEmRNAs), differentially expressed lncRNA (DElncRNAs) and differentially expressed miRNA (DEmiRNAs) between different samples. The common DEmRNAs, DElncRNAs and DEmiRNAs for the two diseases were obtained. The ConsensusPathDB (CPDB) was used to perform biological function enrichment for common DEmRNAs. Gene interaction network was constructed to screen out key genes. Subsequently, real-time polymerase chain reaction (RT-PCR) verification was performed. Lastly, GSE104150 and GSE21125 data sets were utilized for expression validation and diagnostic analysis. There were 1477 DEmRNAs, 502 DElncRNAs and 36 DEmiRNAs between CF and healthy control group. There were 607 DEmRNAs, 379DElncRNAs,s and 42 DEmiRNAs between HF and healthy control group. CH and FH shared 146 DEmRNAs, 80 DElncRNAs, and 6 DEmiRNAs. Hsa-miR-144-3p, CCNE2, C9orf72, MAP3K20-AS1, LEF1-AS1, AC243772.2, FLJ46284, and AC239798.2 were key molecules in lncRNA-miRNA-mRNA network. In addition, hsa-miR-144-3p and CCNE2 may be considered as potential diagnostic gene biomarkers in HF. In this study, the identification of common biomarkers of CF and HF may help prevent CF to HF transition as early as possible.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhaung, HB, China
| | - Tianjie Lv
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhaung, HB, China
| | - Qincong Chen
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhaung, HB, China
| | - Yan Yang
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhaung, HB, China
| | - Lei Xu
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhaung, HB, China
| | - Xiaolei Zhang
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhaung, HB, China
| | - Enmao Wang
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhaung, HB, China
| | - Xitian Hu
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhaung, HB, China
| | - Yuying Liu
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhaung, HB, China
| |
Collapse
|
2
|
Correale M, Tricarico L, Fortunato M, Mazzeo P, Nodari S, Di Biase M, Brunetti ND. New Targets in Heart Failure Drug Therapy. Front Cardiovasc Med 2021; 8:665797. [PMID: 34026873 PMCID: PMC8131549 DOI: 10.3389/fcvm.2021.665797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
Despite recent advances in chronic heart failure management (either pharmacological or non-pharmacological), the prognosis of heart failure (HF) patients remains poor. This poor prognosis emphasizes the need for developing novel pathways for testing new HF drugs, beyond neurohumoral and hemodynamic modulation approaches. The development of new drugs for HF therapy must thus necessarily focus on novel approaches such as the direct effect on cardiomyocytes, coronary microcirculation, and myocardial interstitium. This review summarizes principal evidence on new possible pharmacological targets for the treatment of HF patients, mainly focusing on microcirculation, cardiomyocyte, and anti-inflammatory therapy.
Collapse
Affiliation(s)
- Michele Correale
- Department of Cardiology, Policlinico Riuniti University Hospital, Foggia, Italy
| | - Lucia Tricarico
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Martino Fortunato
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Pietro Mazzeo
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Savina Nodari
- Cardiology Section, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Matteo Di Biase
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | |
Collapse
|
3
|
Verjans R, van Bilsen M, Schroen B. Reviewing the Limitations of Adult Mammalian Cardiac Regeneration: Noncoding RNAs as Regulators of Cardiomyogenesis. Biomolecules 2020; 10:biom10020262. [PMID: 32050588 PMCID: PMC7072544 DOI: 10.3390/biom10020262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/18/2022] Open
Abstract
The adult mammalian heart is incapable of regeneration following cardiac injury, leading to a decline in function and eventually heart failure. One of the most evident barriers limiting cardiac regeneration is the inability of cardiomyocytes to divide. It has recently become clear that the mammalian heart undergoes limited cardiomyocyte self-renewal throughout life and is even capable of modest regeneration early after birth. These exciting findings have awakened the goal to promote cardiomyogenesis of the human heart to repair cardiac injury or treat heart failure. We are still far from understanding why adult mammalian cardiomyocytes possess only a limited capacity to proliferate. Identifying the key regulators may help to progress towards such revolutionary therapy. Specific noncoding RNAs control cardiomyocyte division, including well explored microRNAs and more recently emerged long noncoding RNAs. Elucidating their function and molecular mechanisms during cardiomyogenesis is a prerequisite to advance towards therapeutic options for cardiac regeneration. In this review, we present an overview of the molecular basis of cardiac regeneration and describe current evidence implicating microRNAs and long noncoding RNAs in this process. Current limitations and future opportunities regarding how these regulatory mechanisms can be harnessed to study myocardial regeneration will be addressed.
Collapse
Affiliation(s)
- Robin Verjans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Marc van Bilsen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Blanche Schroen
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
- Correspondence: ; Tel.: +31-433882949
| |
Collapse
|