1
|
Almeida C, Gonçalves-Nobre JG, Alpuim Costa D, Barata P. The potential links between human gut microbiota and cardiovascular health and disease - is there a gut-cardiovascular axis? FRONTIERS IN GASTROENTEROLOGY 2023; 2. [DOI: 10.3389/fgstr.2023.1235126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The gut-heart axis is an emerging concept highlighting the crucial link between gut microbiota and cardiovascular diseases (CVDs). Recent studies have demonstrated that gut microbiota is pivotal in regulating host metabolism, inflammation, and immune function, critical drivers of CVD pathophysiology. Despite a strong link between gut microbiota and CVDs, this ecosystem’s complexity still needs to be fully understood. The short-chain fatty acids, trimethylamine N-oxide, bile acids, and polyamines are directly or indirectly involved in the development and prognosis of CVDs. This review explores the relationship between gut microbiota metabolites and CVDs, focusing on atherosclerosis and hypertension, and analyzes personalized microbiota-based modulation interventions, such as physical activity, diet, probiotics, prebiotics, and fecal microbiota transplantation, as a promising strategy for CVD prevention and treatment.
Collapse
|
2
|
Israr MZ, Zhan H, Salzano A, Voors AA, Cleland JG, Anker SD, Metra M, van Veldhuisen DJ, Lang CC, Zannad F, Samani NJ, Ng LL, Suzuki T. Surrogate markers of gut dysfunction are related to heart failure severity and outcome-from the BIOSTAT-CHF consortium. Am Heart J 2022; 248:108-119. [PMID: 35278373 DOI: 10.1016/j.ahj.2022.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND The contribution of gut dysfunction to heart failure (HF) pathophysiology is not routinely assessed. We sought to investigate whether biomarkers of gut dysfunction would be useful in assessment of HF (eg, severity, adverse outcomes) and risk stratification. METHODS A panel of gut-related biomarkers including metabolites of the choline/carnitine- pathway (acetyl-L-carnitine, betaine, choline, γ-butyrobetaine, L-carnitine and trimethylamine-N-oxide [TMAO]) and the gut peptide, Trefoil factor-3 (TFF-3), were investigated in 1,783 patients with worsening HF enrolled in the systems BIOlogy Study to TAilored Treatment in Chronic Heart Failure (BIOSTAT-CHF) cohort and associations with HF severity and outcomes, and use in risk stratification were assessed. RESULTS Metabolites of the carnitine-TMAO pathway (acetyl-L-carnitine, γ-butyrobetaine, L-carnitine, and TMAO) and TFF-3 were associated with the composite outcome of HF hospitalization or all-cause mortality at 3 years (hazards ratio [HR] 2.04-2.93 [95% confidence interval {CI} 1.30-4.71] P≤ .002). Combining the carnitine-TMAO metabolites with TFF-3, as a gut dysfunction panel, showed a graded association; a greater number of elevated markers was associated with higher New York Heart Association class (P< .001), higher plasma concentrations of B-type natriuretic peptide (P< .001), and worse outcome (HR 1.90-4.58 [95% CI 1.19-6.74] P≤ 0.008). Addition of gut dysfunction biomarkers to the contemporary BIOSTAT HF risk model also improved prediction for the aforementioned composite outcome (C-statistics P≤ .011, NRI 13.5-21.1 [95% CI 2.7-31.9] P≤ .014). CONCLUSIONS A panel of biomarkers of gut dysfunction showed graded association with severity of HF and adverse outcomes. Biomarkers as surrogate markers are potentially useful for assessment of gut dysfunction to HF pathophysiology and in risk stratification.
Collapse
Affiliation(s)
- Muhammad Zubair Israr
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Hong Zhan
- Tellgen Corporation, Shanghai, China
| | - Andrea Salzano
- IRCCS SDN, Diagnostic and Nuclear Research Institute, Naples, Italy
| | - Adriaan A Voors
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - John G Cleland
- Robertson Centre for Biostatistics, Institute of Health and Wellbeing, University of Glasgow, Glasgow and National Heart and Lung Institute, Imperial College, London, UK
| | - Stefan D Anker
- Department of Cardiology (CVK), and Berlin Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marco Metra
- Department of Medical and Surgical Specialties, Institute of Cardiology, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Dirk J van Veldhuisen
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Chim C Lang
- School of Medicine Centre for Cardiovascular and Lung Biology, Division of Medical Sciences, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Faiez Zannad
- Inserm CIC 1433, Université de Lorraine, CHU de Nancy, Nancy, France
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Leong L Ng
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Toru Suzuki
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Leicester, UK; The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | | |
Collapse
|
3
|
Berthelot JM, Bandiaky ON, Le Goff B, Amador G, Chaux AG, Soueidan A, Denis F. Another Look at the Contribution of Oral Microbiota to the Pathogenesis of Rheumatoid Arthritis: A Narrative Review. Microorganisms 2021; 10:59. [PMID: 35056507 PMCID: PMC8778040 DOI: 10.3390/microorganisms10010059] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022] Open
Abstract
Although autoimmunity contributes to rheumatoid arthritis (RA), several lines of evidence challenge the dogma that it is mainly an autoimmune disorder. As RA-associated human leukocyte antigens shape microbiomes and increase the risk of dysbiosis in mucosae, RA might rather be induced by epigenetic changes in long-lived synovial presenting cells, stressed by excessive translocations into joints of bacteria from the poorly cultivable gut, lung, or oral microbiota (in the same way as more pathogenic bacteria can lead to "reactive arthritis"). This narrative review (i) lists evidence supporting this scenario, including the identification of DNA from oral and gut microbiota in the RA synovium (but in also healthy synovia), and the possibility of translocation through blood, from mucosae to joints, of microbiota, either directly from the oral cavity or from the gut, following an increase of gut permeability worsened by migration within the gut of oral bacteria such as Porphyromonas gingivalis; (ii) suggests other methodologies for future works other than cross-sectional studies of periodontal microbiota in cohorts of patients with RA versus controls, namely, longitudinal studies of oral, gut, blood, and synovial microbiota combined with transcriptomic analyses of immune cells in individual patients at risk of RA, and in overt RA, before, during, and following flares of RA.
Collapse
Affiliation(s)
- Jean-Marie Berthelot
- Rheumatology Unit, Nantes University Hospital, Place Alexis Ricordeau, CEDEX 01, 44093 Nantes, France; (J.-M.B.); (B.L.G.)
| | - Octave Nadile Bandiaky
- Division of Fixed Prosthodontics, University of Nantes, 1 Place Alexis Ricordeau, 44042 Nantes, France;
| | - Benoit Le Goff
- Rheumatology Unit, Nantes University Hospital, Place Alexis Ricordeau, CEDEX 01, 44093 Nantes, France; (J.-M.B.); (B.L.G.)
| | - Gilles Amador
- Department of Dental Public Health, Faculty of Dental Surgery, University of Nantes, 44093 Nantes, France;
- Nantes Teaching Hospital, 44000 Nantes, France;
| | - Anne-Gaelle Chaux
- Nantes Teaching Hospital, 44000 Nantes, France;
- Department of Oral Surgery, Faculty of Dental Surgery, University of Nantes, 44000 Nantes, France
| | - Assem Soueidan
- Department of Periodontology, Faculty of Dental Surgery, UIC 11, Rmes U1229, CHU de Nantes, 44000 Nantes, France;
| | - Frederic Denis
- Department of Dental Public Health, Faculty of Dental Surgery, University of Nantes, 44093 Nantes, France;
- Tours Teaching Hospital, 37000 Tours, France
| |
Collapse
|
4
|
Laffin LJ, Bakris GL. Intersection Between Chronic Kidney Disease and Cardiovascular Disease. Curr Cardiol Rep 2021; 23:117. [PMID: 34269921 DOI: 10.1007/s11886-021-01546-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/04/2021] [Indexed: 12/01/2022]
Abstract
PURPOSE OF REVIEW The incidence of chronic kidney disease is increasing worldwide, and the previously decreasing incidence of cardiovascular disease has now plateaued. Understanding the intersection of both heart and kidney disease is crucial. RECENT FINDINGS Chronic kidney disease and cardiovascular disease share common risk factors and specific pathogenic mechanisms and impact a significant segment of the population. Patients with chronic kidney disease are more likely to have cardiovascular disease than progress to end-stage kidney disease requiring renal replacement therapy. We discuss shared risk factors and mechanisms for cardiovascular and chronic kidney disease. The following also addresses contemporary cardiovascular treatment considerations in patients with chronic kidney disease with a focus on atherosclerotic cardiovascular disease and heart failure.
Collapse
Affiliation(s)
- Luke J Laffin
- Section of Preventive Cardiology and Rehabilitation, Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - George L Bakris
- Am. Heart Assoc. Comprehensive Hypertension Center, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Chicago Medicine, 5841 S. Maryland Ave, MC 1027, Chicago, IL, 60637, USA.
| |
Collapse
|
5
|
The influence of gut microbiota in cardiovascular diseases-a brief review. Porto Biomed J 2021; 6:e106. [PMID: 33490701 PMCID: PMC7817281 DOI: 10.1097/j.pbj.0000000000000106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022] Open
Abstract
Lately, the gut microbiota has emerged as an important mediator of the development and the outcomes of certain diseases. It's well known that the gut microbiota plays an important role in maintaining human health. Still far from being completely understood and analyzed is the complexity of this ecosystem, although a close relationship between the gut microbiota and cardiovascular diseases (CVD) has been established. A loss of diversity in the microbiota will lead to physiological changes, which can improve inflammatory or infection states like atherosclerosis and hypertension, the basic pathological process of CVD. Targeting the gut microbiota and its metabolites are new and promising strategies for the treatment and prognosis of CVD.
Collapse
|
6
|
Kirichenko TV, Markina YV, Sukhorukov VN, Khotina VA, Wu WK, Orekhov AN. A Novel Insight at Atherogenesis: The Role of Microbiome. Front Cell Dev Biol 2020; 8:586189. [PMID: 33072766 PMCID: PMC7536348 DOI: 10.3389/fcell.2020.586189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/31/2020] [Indexed: 12/27/2022] Open
Abstract
There is an important task of current medicine to identify mechanisms and new markers of subclinical atherosclerosis in order to develop early targets for the diagnosis and treatment of this disease, since it causes such widespread diseases as myocardial infarction, stroke, sudden death, and other common reasons of disability and mortality in developed countries. In recent years, studies of the human microbiome in different fields of medicine have become increasingly popular; there is evidence from numerous studies of the significant contribution of microbiome in different steps of atherogenesis. This review attempted to determine the current status of the databases PubMed and Scopus (until May, 2020) to highlight current ideas on the potential role of microbiome and its metabolites in atherosclerosis development, its mechanisms of action in lipids metabolism, endothelial dysfunction, inflammatory pathways, and mitochondrial dysfunction. Results of clinical studies elucidating the relationship of microbiome with subclinical atherosclerosis and cardiovascular disease considered in this article demonstrate strong association of microbiome composition and its metabolites with atherosclerosis and cardiovascular disease. Data on microbiome impact in atherogenesis open a wide perspective to develop new diagnostic and therapeutic approaches, but further comprehensive studies are necessary.
Collapse
Affiliation(s)
- Tatiana V Kirichenko
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, Moscow, Russia
| | - Yuliya V Markina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, Moscow, Russia
| | - Vasily N Sukhorukov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, Moscow, Russia
| | - Victoria A Khotina
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Wei-Kai Wu
- Department of Internal Medicine, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan
| | - Alexander N Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|