1
|
de Garnica García MG, Gil Bernabé M, Pérez-Martínez C, Mola Solà L, Duocastella Codina L, Molina Crisol M, Gómez Castel A, Pérez de Prado A. Influence of the arterial elastic component on the response to balloon angioplasty in femoral arteries of a healthy porcine model. Animal Model Exp Med 2025. [PMID: 40345177 DOI: 10.1002/ame2.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 04/01/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND The efficacy of balloon angioplasty for treating peripheral artery disease is influenced by various factors, some of them not yet totally understood. This study aimed to evaluate the role of elastin content in vascular responses 28 days post-angioplasty using uncoated and paclitaxel-coated balloons with the same platform in femoral arteries of a healthy porcine model. METHODS Eight animals underwent balloon angioplasty on the external and internal branches of femoral arteries. Histopathologic evaluation was conducted at follow-up to assess the elastin content, vascular damage, morphological features, and neointimal formation. RESULTS The elastin content was significantly higher in the external than in the internal femoral artery (p = 0.0014). After balloon angioplasty, it was inversely correlated with vascular injury score (ρ = -0.4510, p = 0.0096), neointimal inflammation (ρ = -0.3352, p = 0.0607), transmural (ρ = -0.4474, p = 0.0103) and circumferential (ρ = -0.4591, p = 0.0082) smooth muscle cell loss, presence of proteoglycans (ρ = -0.5172, p = 0.0024), fibrin deposition (ρ = -0.3496, p = 0.0499), and adventitial fibrosis (ρ = -0.6229, p = 0.0002). Neointimal formation inhibition with paclitaxel was evident only in arteries with disruption of the internal elastic lamina, with a significant smaller neointimal area in arteries treated with paclitaxel-coated balloons compared to uncoated balloons (median [Q1-Q3]: 10.25 [7.49-15.64] vs. 24.44 [18.96-30.52], p = 0.0434). CONCLUSIONS Elastin content varies between branches of the femoral artery and significantly influences the integrity of the internal elastic lamina, the vessel's adaptive response, and paclitaxel efficacy after balloon angioplasty.
Collapse
Affiliation(s)
- María Gracia de Garnica García
- Department of Animal Health, Section of Pathology, Veterinary School, University of León, León, Spain
- Micros Veterinaria S.L., León, Spain
| | - Marina Gil Bernabé
- Department of Animal Health, Section of Pathology, Veterinary School, University of León, León, Spain
| | - Claudia Pérez-Martínez
- Department of Animal Health, Section of Pathology, Veterinary School, University of León, León, Spain
| | | | | | | | | | | |
Collapse
|
2
|
La Chica Lhoëst MT, Martinez A, Claudi L, Garcia E, Benitez-Amaro A, Polishchuk A, Piñero J, Vilades D, Guerra JM, Sanz F, Rotllan N, Escolà-Gil JC, Llorente-Cortés V. Mechanisms modulating foam cell formation in the arterial intima: exploring new therapeutic opportunities in atherosclerosis. Front Cardiovasc Med 2024; 11:1381520. [PMID: 38952543 PMCID: PMC11215187 DOI: 10.3389/fcvm.2024.1381520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
In recent years, the role of macrophages as the primary cell type contributing to foam cell formation and atheroma plaque development has been widely acknowledged. However, it has been long recognized that diffuse intimal thickening (DIM), which precedes the formation of early fatty streaks in humans, primarily consists of lipid-loaded smooth muscle cells (SMCs) and their secreted proteoglycans. Recent studies have further supported the notion that SMCs constitute the majority of foam cells in advanced atherosclerotic plaques. Given that SMCs are a major component of the vascular wall, they serve as a significant source of microvesicles and exosomes, which have the potential to regulate the physiology of other vascular cells. Notably, more than half of the foam cells present in atherosclerotic lesions are of SMC origin. In this review, we describe several mechanisms underlying the formation of intimal foam-like cells in atherosclerotic plaques. Based on these mechanisms, we discuss novel therapeutic approaches that have been developed to regulate the generation of intimal foam-like cells. These innovative strategies hold promise for improving the management of atherosclerosis in the near future.
Collapse
Affiliation(s)
- M. T. La Chica Lhoëst
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - A. Martinez
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - L. Claudi
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - E. Garcia
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - A. Benitez-Amaro
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - A. Polishchuk
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - J. Piñero
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences (DCEXS), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - D. Vilades
- Department of Cardiology, Hospital de la Santa Creu I Sant Pau, Biomedical Research Institute Sant Pau (IIB-SANTPAU), Universitat Autonoma de Barcelona, Barcelona, Spain
- Department of Cardiovascular, CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - J. M. Guerra
- Department of Cardiology, Hospital de la Santa Creu I Sant Pau, Biomedical Research Institute Sant Pau (IIB-SANTPAU), Universitat Autonoma de Barcelona, Barcelona, Spain
- Department of Cardiovascular, CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - F. Sanz
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences (DCEXS), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - N. Rotllan
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Department of Cardiovascular, CIBERDEM, Institute of Health Carlos III, Madrid, Spain
| | - J. C. Escolà-Gil
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Department of Cardiovascular, CIBERDEM, Institute of Health Carlos III, Madrid, Spain
| | - V. Llorente-Cortés
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Department of Cardiovascular, CIBERCV, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Besler KJ, Blanchard V, Francis GA. Lysosomal acid lipase deficiency: A rare inherited dyslipidemia but potential ubiquitous factor in the development of atherosclerosis and fatty liver disease. Front Genet 2022; 13:1013266. [PMID: 36204319 PMCID: PMC9530988 DOI: 10.3389/fgene.2022.1013266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Lysosomal acid lipase (LAL), encoded by the gene LIPA, is the sole neutral lipid hydrolase in lysosomes, responsible for cleavage of cholesteryl esters and triglycerides into their component parts. Inherited forms of complete (Wolman Disease, WD) or partial LAL deficiency (cholesteryl ester storage disease, CESD) are fortunately rare. Recently, LAL has been identified as a cardiovascular risk gene in genome-wide association studies, though the directionality of risk conferred remains controversial. It has also been proposed that the low expression and activity of LAL in arterial smooth muscle cells (SMCs) that occurs inherently in nature is a likely determinant of the propensity of SMCs to form the majority of foam cells in atherosclerotic plaque. LAL also likely plays a potential role in fatty liver disease. This review highlights the nature of LAL gene mutations in WD and CESD, the association of LAL with prediction of cardiovascular risk from genome-wide association studies, the importance of relative LAL deficiency in SMC foam cells, and the need to further interrogate the pathophysiological impact and cell type-specific role of enhancing LAL activity as a novel treatment strategy to reduce the development and induce the regression of ischemic cardiovascular disease and fatty liver.
Collapse
|
4
|
Meng LB, Zhang YM, Luo Y, Gong T, Liu DP. Chronic Stress A Potential Suspect Zero of Atherosclerosis: A Systematic Review. Front Cardiovasc Med 2022; 8:738654. [PMID: 34988123 PMCID: PMC8720856 DOI: 10.3389/fcvm.2021.738654] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis (AS) is a chronic vascular inflammatory disease, in which the lipid accumulation in the intima of the arteries shows yellow atheromatous appearance, which is the pathological basis of many diseases, such as coronary artery disease, peripheral artery disease and cerebrovascular disease. In recent years, it has become the main cause of death in the global aging society, which seriously endangers human health. As a result, research on AS is increasing. Lesions of atherosclerosis contain macrophages, T cells and other cells of the immune response, together with cholesterol that infiltrates from the blood. Recent studies have shown that chronic stress plays an important role in the occurrence and development of AS. From the etiology of disease, social, environmental and genetic factors jointly determine the occurrence of disease. Atherosclerotic cardio-cerebrovascular disease (ASCVD) is often caused by chronic stress (CS). If it cannot be effectively prevented, there will be biological changes in the body environment successively, and then the morphological changes of the corresponding organs. If the patient has a genetic predisposition and a combination of environmental factors triggers the pathogenesis, then chronic stress can eventually lead to AS. Therefore, this paper discusses the influence of chronic stress on AS in the aspects of inflammation, lipid metabolism, endothelial dysfunction, hemodynamics and blood pressure, plaque stability, autophagy, ferroptosis, and cholesterol efflux.
Collapse
Affiliation(s)
- Ling-Bing Meng
- Department of Cardiology, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan-Meng Zhang
- Department of Internal Medicine, The Third Medical Centre of Chinese People's Liberation Army (PLA) General Hospital, The Training Site for Postgraduate of Jinzhou Medical University, Beijing, China
| | - Yue Luo
- Department of Respiratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Tao Gong
- Department of Neurology, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - De-Ping Liu
- Department of Cardiology, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Checkouri E, Blanchard V, Meilhac O. Macrophages in Atherosclerosis, First or Second Row Players? Biomedicines 2021; 9:biomedicines9091214. [PMID: 34572399 PMCID: PMC8465019 DOI: 10.3390/biomedicines9091214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/24/2022] Open
Abstract
Macrophages represent a cell type that has been widely described in the context of atherosclerosis since the earliest studies in the 17th century. Their role has long been considered to be preponderant in the onset and aggravation of atherosclerosis, in particular by participating in the establishment of a chronic inflammatory state by the release of pro-inflammatory cytokines and by uncontrolled engorgement of lipids resulting in the formation of foam cells and later of the necrotic core. However, recent evidence from mouse models using an elegant technique of tracing vascular smooth muscle cells (VSMCs) during plaque development revealed that resident VSMCs display impressive plastic properties in response to an arterial injury, allowing them to switch into different cell types within the plaque, including mesenchymal-like cells, macrophage-like cells and osteochondrogenic-like cells. In this review, we oppose the arguments in favor or against the influence of macrophages versus VSMCs in all stages of atherosclerosis including pre-atherosclerosis, formation of lipid-rich foam cells, development of the necrotic core and the fibrous cap as well as calcification and rupture of the plaque. We also analyze the relevance of animal models for the investigation of the pathophysiological mechanisms of atherosclerosis in humans, and discuss potential therapeutic strategies targeting either VSMCs or macrophage to prevent the development of cardiovascular events. Overall, although major findings have been made from animal models, efforts are still needed to better understand and therefore prevent the development of atherosclerotic plaques in humans.
Collapse
Affiliation(s)
- Eloïse Checkouri
- INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Sainte-Clotilde, France; (E.C.); (V.B.)
- Habemus Papam, Food Industry, 97470 Saint-Benoit, France
| | - Valentin Blanchard
- INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Sainte-Clotilde, France; (E.C.); (V.B.)
- Departments of Medicine, Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St Paul’s Hospital, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Olivier Meilhac
- INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Sainte-Clotilde, France; (E.C.); (V.B.)
- CHU de La Réunion, INSERM, CIC1410, 97500 Saint-Pierre, France
- Correspondence: ; Tel.: +33-262-93-8811
| |
Collapse
|