1
|
Koh JYJ, Tan CYH, Li M, Liu MH, Chew HSJ. The Effectiveness of Time-Restricted Eating as an Intermittent Fasting Approach on Shift Workers' Glucose Metabolism: A Systematic Review and Meta-Analysis. Nutrients 2025; 17:1689. [PMID: 40431429 PMCID: PMC12114545 DOI: 10.3390/nu17101689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/07/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Shift workers face higher risks of impaired glucose metabolism due to irregular eating habits and circadian misalignment. Time-restricted eating (TRE) could improve glucose metabolism by aligning food intake with the circadian clock, but its effectiveness remains unclear. Methods: Ten electronic databases (PubMed, EMBASE, Cochrane Library, CINAHL, PsycINFO, Scopus, Web of Science, ProQuest Dissertations and Theses, Science.gov, and ClinicalTrials.gov) were searched from journal inception to September 2024. Only randomized controlled trials (RCTs) involving shift workers were included. Meta-analyses with sensitivity analyses were conducted using a random-effects model to pool glucose metabolism and sleep outcomes, with heterogeneity and quality assessments performed. Results: Six RCTs were included. TRE demonstrated positive but non-significant effects on glucose metabolism outcomes: fasting blood glucose (weighted mean difference [WMD]: -0.02 mmol/L, 95% confidence interval [CI]: -0.13 to 0.10, I2 = 0%), fasting blood insulin (WMD: -5.77 pmol/L, 95% CI: -85.62 to 74.08, I2 = 92%), HOMA-IR (WMD: -0.50, 95% CI: -2.76 to 1.76, I2 = 82%), 2 h postprandial glucose (WMD: -0.65 mmol/L, 95% CI: -3.18 to 1.89, I2 = 86%), total sleep time (g = 0.07, 95% CI: -0.23 to 0.37, I2 = 0%), and sleep efficiency (g = -0.05, 95% CI: -0.63 to 0.53, I2 = 62%). Sensitivity analyses yielded similar findings, and overall certainty of evidence was rated 'very low'. Conclusions: While TRE shows potential for improving the glucose metabolism in shift workers, current evidence remains inconclusive due to small sample sizes and study limitations. Future research should prioritize well-powered TRE RCTs in shift workers that adhere to a 6-10 h eating window. Incorporating early-TRE schedules with sleep hygiene may optimize metabolic outcomes, with circadian biomarkers analyzed to better elucidate the mechanistic pathway implicated.
Collapse
Affiliation(s)
- Jia Ying Jennell Koh
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117543, Singapore; (J.Y.J.K.); (C.Y.H.T.)
| | - Celine Yu Han Tan
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117543, Singapore; (J.Y.J.K.); (C.Y.H.T.)
| | - Meng Li
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Mei Hui Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117543, Singapore;
| | - Han Shi Jocelyn Chew
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117543, Singapore; (J.Y.J.K.); (C.Y.H.T.)
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
2
|
Duez H, Staels B. Circadian Disruption and the Risk of Developing Obesity. Curr Obes Rep 2025; 14:20. [PMID: 39939483 PMCID: PMC11821678 DOI: 10.1007/s13679-025-00610-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2025] [Indexed: 02/14/2025]
Abstract
PURPOSE OF THE REVIEW This review summarizes recent evidence for a role of the clock in adipose tissue physiology and the impact of circadian desynchrony on the development of obesity. RECENT FINDINGS Circadian disruptions due to shift work, late time eating and nighttime light exposure are associated with obesity and its metabolic and cardiovascular consequences. Studies in mice harboring tissue-specific gain/loss of function mutations in clock genes revealed that the circadian clock acts on multiple pathways to control adipogenesis, lipogenesis/lipolysis and thermogenesis. Time-restricted eating (TRE), aligning feeding with the active period to restore clock function, represents a promising strategy to curb obesity. While TRE has shown clear benefits, especially in participants at higher cardiometabolic risk, current studies are limited in size and duration. Larger, well-controlled studies are warranted to conclusively assess the effects of TRE in relation to the metabolic status and gender. Field studies in shift-workers, comparing permanent night shift versus rotating shifts, are also necessary to identify the optimal time window for TRE.
Collapse
Affiliation(s)
- Hélène Duez
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France.
| | - Bart Staels
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France.
| |
Collapse
|
3
|
Zhang X, Wei G, Zhang X, Guo J, Zhao J, Li X, Zhao X, Shi J, Yang Y, Fan S, Wang H, Zhi K, Zhu K, Du J, Cao W. Association of Sleep Duration and Daytime Napping With Risk of Hyperuricemia: A Systematic Review and Meta-Analysis. Int J Rheum Dis 2025; 28:e70050. [PMID: 39844478 DOI: 10.1111/1756-185x.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND Hyperuricemia (HUA), marked by elevated serum urate levels, is increasingly prevalent worldwide. The relationship between lifestyle factors such as sleep duration, daytime napping, and HUA risk remains unclear. Although some studies suggest that sleep variables, including short or long sleep durations and napping, may influence serum uric acid levels, results are inconsistent. METHODS A systematic review and meta-analysis was performed according to the PRISMA guidelines. Databases such as PubMed, Embase, Web of Science, and Cochrane Library were searched until February 2024. The data were extracted, and the quality of the study was assessed independently by two reviewers. RESULTS Ten studies involving a total of 231 978 participants were included. Short sleep duration was related to higher risk of HUA (odds ratio (OR) 1.10, 95% confidence interval (CI): 1.03-1.18), while long sleep duration had no significant effect (OR 0.98, 95% CI: 0.89-1.07). The risk of HUA and daytime napping was statistically significant(OR 1.34, 95% CI: 1.12-1.61). CONCLUSIONS Short sleep duration and prolonged daytime napping are associated with an increased risk of HUA. These findings suggest that sleep patterns should be considered in lifestyle interventions for HUA prevention. Further research is required to establish causal relationships.
Collapse
Affiliation(s)
- Xinwen Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | - Guangcheng Wei
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Xieyu Zhang
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Junyi Guo
- Robotics Movement Department, Amazon, Boston, Massachusetts, USA
| | - Jiahe Zhao
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Xiaoxu Li
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Xin Zhao
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Jinjie Shi
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Yue Yang
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Su Fan
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Hongli Wang
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Kai Zhi
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Zhu
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Jieyang Du
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Wei Cao
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| |
Collapse
|
4
|
Melnik BC, Weiskirchen R, Stremmel W, John SM, Schmitz G. Risk of Fat Mass- and Obesity-Associated Gene-Dependent Obesogenic Programming by Formula Feeding Compared to Breastfeeding. Nutrients 2024; 16:2451. [PMID: 39125332 PMCID: PMC11314333 DOI: 10.3390/nu16152451] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
It is the purpose of this review to compare differences in postnatal epigenetic programming at the level of DNA and RNA methylation and later obesity risk between infants receiving artificial formula feeding (FF) in contrast to natural breastfeeding (BF). FF bears the risk of aberrant epigenetic programming at the level of DNA methylation and enhances the expression of the RNA demethylase fat mass- and obesity-associated gene (FTO), pointing to further deviations in the RNA methylome. Based on a literature search through Web of Science, Google Scholar, and PubMed databases concerning the dietary and epigenetic factors influencing FTO gene and FTO protein expression and FTO activity, FTO's impact on postnatal adipogenic programming was investigated. Accumulated translational evidence underscores that total protein intake as well as tryptophan, kynurenine, branched-chain amino acids, milk exosomal miRNAs, NADP, and NADPH are crucial regulators modifying FTO gene expression and FTO activity. Increased FTO-mTORC1-S6K1 signaling may epigenetically suppress the WNT/β-catenin pathway, enhancing adipocyte precursor cell proliferation and adipogenesis. Formula-induced FTO-dependent alterations of the N6-methyladenosine (m6A) RNA methylome may represent novel unfavorable molecular events in the postnatal development of adipogenesis and obesity, necessitating further investigations. BF provides physiological epigenetic DNA and RNA regulation, a compelling reason to rely on BF.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Wolfgang Stremmel
- Praxis for Internal Medicine, Beethovenstrasse 2, D-76530 Baden-Baden, Germany;
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrück, D-49076 Osnabrück, Germany;
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, D-93053 Regensburg, Germany;
| |
Collapse
|
5
|
Vesković M, Šutulović N, Hrnčić D, Stanojlović O, Macut D, Mladenović D. The Interconnection between Hepatic Insulin Resistance and Metabolic Dysfunction-Associated Steatotic Liver Disease-The Transition from an Adipocentric to Liver-Centric Approach. Curr Issues Mol Biol 2023; 45:9084-9102. [PMID: 37998747 PMCID: PMC10670061 DOI: 10.3390/cimb45110570] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The central mechanism involved in the pathogenesis of MAFLD is insulin resistance with hyperinsulinemia, which stimulates triglyceride synthesis and accumulation in the liver. On the other side, triglyceride and free fatty acid accumulation in hepatocytes promotes insulin resistance via oxidative stress, endoplasmic reticulum stress, lipotoxicity, and the increased secretion of hepatokines. Cytokines and adipokines cause insulin resistance, thus promoting lipolysis in adipose tissue and ectopic fat deposition in the muscles and liver. Free fatty acids along with cytokines and adipokines contribute to insulin resistance in the liver via the activation of numerous signaling pathways. The secretion of hepatokines, hormone-like proteins, primarily by hepatocytes is disturbed and impairs signaling pathways, causing metabolic dysregulation in the liver. ER stress and unfolded protein response play significant roles in insulin resistance aggravation through the activation of apoptosis, inflammatory response, and insulin signaling impairment mediated via IRE1/PERK/ATF6 signaling pathways and the upregulation of SREBP 1c. Circadian rhythm derangement and biological clock desynchronization are related to metabolic disorders, insulin resistance, and NAFLD, suggesting clock genes as a potential target for new therapeutic strategies. This review aims to summarize the mechanisms of hepatic insulin resistance involved in NAFLD development and progression.
Collapse
Affiliation(s)
- Milena Vesković
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Nikola Šutulović
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.Š.); (D.H.); (O.S.)
| | - Dragan Hrnčić
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.Š.); (D.H.); (O.S.)
| | - Olivera Stanojlović
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.Š.); (D.H.); (O.S.)
| | - Djuro Macut
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dušan Mladenović
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
6
|
Bolshette N, Ibrahim H, Reinke H, Asher G. Circadian regulation of liver function: from molecular mechanisms to disease pathophysiology. Nat Rev Gastroenterol Hepatol 2023; 20:695-707. [PMID: 37291279 DOI: 10.1038/s41575-023-00792-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 06/10/2023]
Abstract
A wide variety of liver functions are regulated daily by the liver circadian clock and via systemic circadian control by other organs and cells within the gastrointestinal tract as well as the microbiome and immune cells. Disruption of the circadian system, as occurs during jetlag, shift work or an unhealthy lifestyle, is implicated in several liver-related pathologies, ranging from metabolic diseases such as obesity, type 2 diabetes mellitus and nonalcoholic fatty liver disease to liver malignancies such as hepatocellular carcinoma. In this Review, we cover the molecular, cellular and organismal aspects of various liver pathologies from a circadian viewpoint, and in particular how circadian dysregulation has a role in the development and progression of these diseases. Finally, we discuss therapeutic and lifestyle interventions that carry health benefits through support of a functional circadian clock that acts in synchrony with the environment.
Collapse
Affiliation(s)
- Nityanand Bolshette
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hussam Ibrahim
- University of Düsseldorf, Medical Faculty, Institute of Clinical Chemistry and Laboratory Diagnostics, Düsseldorf, Germany
| | - Hans Reinke
- University of Düsseldorf, Medical Faculty, Institute of Clinical Chemistry and Laboratory Diagnostics, Düsseldorf, Germany.
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|