1
|
Dehghan Z, Mohammadi-Yeganeh S, Salehi M. MiRNA-155 regulates cumulus cells function, oocyte maturation, and blastocyst formation. Biol Reprod 2020; 103:548-559. [DOI: 10.1093/biolre/ioaa098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/05/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022] Open
Abstract
Abstract
Numerous oocytes are retrieved during in vitro fertilization from patients with polycystic ovary syndrome (PCOS). The poor quality of these oocytes leads to lower fertilization and decreases in cleavage and implantation. MiR-155 is one of the microRNA (miRNA) that is increased in serum and granulosa cells of PCOS patients. In this study, we investigate the effects of miR-155 expression and its target genes on oocyte maturation and embryo development. We used the calcium phosphate protocol to transfect vectors that contained miR-155 or miR-off 155 and alone eGFP into cumulus oophorus complex (COCs) of B6D2F1 female mice for in vitro maturation. Cumulus expansion, nuclear, and cytoplasmic maturation, as well as cleavage rates were determined in groups transfected and compared with the control groups. Quantitative real-time polymerase chain reaction was performed to analyze expression levels of miR-155 and the target genes in the cumulus cells, oocytes, and blastocysts. MiR-155 overexpression in COCs suppressed cumulus expansion, oocyte maturation, and inhibition of endogenous miR-155 by miR-off 155 improved cumulus expansion and oocyte maturation by downregulation and expression increase of the Smad2 and Bcl2 genes. On the other hand, overexpression and downregulation of miR-155 in the COCs led to increase and decrease in cleavage rates by changes in expressions of the Mecp2, Jarid2, and Notch1 genes, respectively (P < 0.05). These results suggested that miR-155 overexpression in granulosa cells of PCOS patients can negatively affect nuclear and cytoplasmic maturation, but this miRNA expression has a positive impact on embryo development.
Collapse
Affiliation(s)
- Zeinab Dehghan
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Salehi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Poulos RC, Olivier J, Wong JWH. The interaction between cytosine methylation and processes of DNA replication and repair shape the mutational landscape of cancer genomes. Nucleic Acids Res 2017; 45:7786-7795. [PMID: 28531315 PMCID: PMC5737810 DOI: 10.1093/nar/gkx463] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/15/2017] [Indexed: 12/31/2022] Open
Abstract
Methylated cytosines (5mCs) are frequently mutated in the genome. However, no studies have yet comprehensively analysed mutation–methylation associations across cancer types. Here we analyse 916 cancer genomes, together with tissue type-specific methylation and replication timing data. We describe a strong mutation–methylation association across colorectal cancer subtypes, most interestingly in samples with microsatellite instability (MSI) or Polymerase epsilon (POLE) exonuclease domain mutations. By analysing genomic regions with differential mismatch repair (MMR) efficiency, we suggest a possible role for MMR in the correction of 5mC deamination events, potentially accounting for the high rate of 5mC mutation accumulation in MSI tumours. Additionally, we propose that mutant POLE asserts a mutator phenotype specifically at 5mCs, and we find coding mutation hotspots in POLE-mutant cancers at highly-methylated CpGs in the tumour-suppressor genes APC and TP53. Finally, using multivariable regression models, we demonstrate that different cancers exhibit distinct mutation–methylation associations, with DNA repair influencing such associations in certain cancer genomes. Taken together, we find differential associations with methylation that are vital for accurately predicting expected mutation loads across cancer types. Our findings reveal links between methylation and common mutation and repair processes, with these mechanisms defining a key part of the mutational landscape of cancer genomes.
Collapse
Affiliation(s)
- Rebecca C Poulos
- Prince of Wales Clinical School and Lowy Cancer Research Centre, UNSW Sydney, NSW 2052, Australia
| | - Jake Olivier
- School of Mathematics and Statistics, The Red Centre, UNSW Sydney, NSW 2052, Australia
| | - Jason W H Wong
- Prince of Wales Clinical School and Lowy Cancer Research Centre, UNSW Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Zhang P, Rausch C, Hastert FD, Boneva B, Filatova A, Patil SJ, Nuber UA, Gao Y, Zhao X, Cardoso MC. Methyl-CpG binding domain protein 1 regulates localization and activity of Tet1 in a CXXC3 domain-dependent manner. Nucleic Acids Res 2017; 45:7118-7136. [PMID: 28449087 PMCID: PMC5499542 DOI: 10.1093/nar/gkx281] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 03/30/2017] [Accepted: 04/06/2017] [Indexed: 12/20/2022] Open
Abstract
Cytosine modifications diversify and structure the genome thereby controlling proper development and differentiation. Here, we focus on the interplay of the 5-methylcytosine reader Mbd1 and modifier Tet1 by analyzing their dynamic subcellular localization and the formation of the Tet oxidation product 5-hydroxymethylcytosine in mammalian cells. Our results demonstrate that Mbd1 enhances Tet1-mediated 5-methylcytosine oxidation. We show that this is due to enhancing the localization of Tet1, but not of Tet2 and Tet3 at heterochromatic DNA. We find that the recruitment of Tet1 and concomitantly its catalytic activity eventually leads to the displacement of Mbd1 from methylated DNA. Finally, we demonstrate that increased Tet1 heterochromatin localization and 5-methylcytosine oxidation are dependent on the CXXC3 domain of Mbd1, which recognizes unmethylated CpG dinucleotides. The Mbd1 CXXC3 domain deletion isoform, which retains only binding to methylated CpGs, on the other hand, blocks Tet1-mediated 5-methylcytosine to 5-hydroxymethylcytosine conversion, indicating opposite biological effects of Mbd1 isoforms. Our study provides new insights on how cytosine modifications, their modifiers and readers cross-regulate themselves.
Collapse
Affiliation(s)
- Peng Zhang
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Cathia Rausch
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Florian D. Hastert
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Boyana Boneva
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Alina Filatova
- Stem Cell and Developmental Biology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Sujit J. Patil
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Ulrike A. Nuber
- Stem Cell and Developmental Biology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Yu Gao
- Waisman Center & Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center & Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - M. Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| |
Collapse
|
4
|
Romero-Fernández I, Casas-Delucchi CS, Cano-Linares M, Arroyo M, Sánchez A, Cardoso MC, Marchal JA. Epigenetic modifications in sex heterochromatin of vole rodents. Chromosoma 2014; 124:341-51. [PMID: 25527445 DOI: 10.1007/s00412-014-0502-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 11/26/2022]
Abstract
The genome of some vole rodents contains large blocks of heterochromatin coupled to the sex chromosomes. While the DNA content of these heterochromatic blocks has been extensively analyzed, little is known about the epigenetic modifications controlling their structure and dynamics. To better understand its organization and functions within the nucleus, we have compared the distribution pattern of several epigenetic marks in cells from two species, Microtus agrestis and Microtus cabrerae. We first could show that the heterochromatic blocks are identifiable within the nuclei due to their AT enrichment detectable by DAPI staining. By immunostaining analyses, we demonstrated that enrichment in H3K9me3 and HP1, depletion of DNA methylation as well as H4K8ac and H3K4me2, are major conserved epigenetic features of this heterochromatin in both sex chromosomes. Furthermore, we provide evidence of transcriptional activity for some repeated DNAs in cultivated cells. These transcripts are partially polyadenylated and their levels are not altered during mitotic arrest. In summary, we show here that enrichment in H3K9me3 and HP1, DNA demethylation, and transcriptional activity are major epigenetic features of sex heterochromatin in vole rodents.
Collapse
Affiliation(s)
- I Romero-Fernández
- Department of Experimental Biology, University of Jaén, Jaén, E-23071, Spain
| | | | | | | | | | | | | |
Collapse
|
5
|
Becker A, Allmann L, Hofstätter M, Casà V, Weber P, Lehmkuhl A, Herce HD, Cardoso MC. Direct homo- and hetero-interactions of MeCP2 and MBD2. PLoS One 2013; 8:e53730. [PMID: 23335972 PMCID: PMC3546041 DOI: 10.1371/journal.pone.0053730] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 12/04/2012] [Indexed: 01/11/2023] Open
Abstract
Epigenetic marks like methylation of cytosines at CpG dinucleotides are essential for mammalian development and play a major role in the regulation of gene expression and chromatin architecture. The methyl-cytosine binding domain (MBD) protein family recognizes and translates this methylation mark. We have recently shown that the level of MeCP2 and MBD2, two members of the MBD family, increased during differentiation and their ectopic expression induced heterochromatin clustering in vivo. As oligomerization of these MBD proteins could constitute a factor contributing to the chromatin clustering effect, we addressed potential associations among the MBD family performing a series of different interaction assays in vitro as well as in vivo. Using recombinant purified MBDs we found that MeCP2 and MBD2 showed the stronger self and cross association as compared to the other family members. Besides demonstrating that these homo- and hetero-interactions occur in the absence of DNA, we could confirm them in mammalian cells using co-immunoprecipitation analysis. Employing a modified form of the fluorescent two-hybrid protein-protein interaction assay, we could clearly visualize these associations in single cells in vivo. Deletion analysis indicated that the region of MeCP2 comprising amino acids 163–309 as well the first 152 amino acids of MBD2 are the domains responsible for MeCP2 and MBD2 associations. Our results strengthen the possibility that MeCP2 and MBD2 direct interactions could crosslink chromatin fibers and therefore give novel insight into the molecular mechanism of MBD mediated global heterochromatin architecture.
Collapse
Affiliation(s)
- Annette Becker
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Lena Allmann
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | | | - Valentina Casà
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Patrick Weber
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Anne Lehmkuhl
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Henry D. Herce
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - M. Cristina Cardoso
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
- * E-mail:
| |
Collapse
|
6
|
Heterochromatin and gene positioning: inside, outside, any side? Chromosoma 2012; 121:555-63. [PMID: 23090282 PMCID: PMC3501169 DOI: 10.1007/s00412-012-0389-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/07/2012] [Accepted: 10/08/2012] [Indexed: 01/16/2023]
Abstract
All cellular processes depend on the expression and repression of the right sets of genes at the right time. As each cell contains the same DNA, transcriptional and epigenetic factors have to maintain tight control over gene expression. Even a small divergence from the correct transcriptional program can lead to severe defects and even death. Having deciphered the complete linear genetic information, we need to clarify how this information is organized into the dynamic and highly heterogeneous three-dimensional space of the eukaryotic cell nucleus. Observations on the higher order organization of DNA into differentiated condensation levels date back to the early twentieth century, and potential implications of these structural features to gene expression were postulated shortly after. In particular, proximity of genes to condensed regions of heterochromatin was proposed to negatively influence their expression and, henceforward, the concept of heterochromatin as subnuclear silencing compartment emerged. Methodological advances fueled a flurry of recent studies, which only, in part, led support to this concept. In this review, we address how (hetero)chromatin structure and proximity might influence gene expression and discuss the challenges and means to unravel this fundamental biological question.
Collapse
|
7
|
Munro SK, Farquhar CM, Mitchell MD, Ponnampalam AP. Epigenetic regulation of endometrium during the menstrual cycle. Mol Hum Reprod 2010; 16:297-310. [PMID: 20139117 DOI: 10.1093/molehr/gaq010] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The endometrium undergoes morphological and functional changes during the menstrual cycle which are essential for uterine receptivity. These changes are driven by estrogen and progesterone and involve the fine control of many different genes-several of which have been identified as being epigenetically regulated. Epigenetic modification may therefore influence the functional changes in the endometrium required for successful implantation. There is, however, only limited information on epigenetic regulation in endometrium. We review the potential role of epigenetic regulation of key processes during the menstrual cycle and present our own findings following a preliminary study into global acetylation levels in the human endometrium. A changing epigenetic state is associated with the differentiation of stem cells into different lineages and thus may be involved in endometrial regeneration. Histone acetylation is implicated in the vascular endothelial growth factor pathway during angiogenesis, and studies using histone deacetylase inhibitors suggest an involvement in endometrial proliferation and differentiation. The processes of decidualization and implantation are also associated with epigenetic change and epigenetic modulators show variable expression across the menstrual cycle. Our own studies found that endometrial global histone acetylation, as determined by western blotting, changed throughout the menstrual cycle and correlated well with expected transcription activity during the different phases. This suggests that epigenetics may be involved in the regulation of endometrial gene expression during the menstrual cycle and that abnormal epigenetic modifications may therefore be associated with implantation failure and early pregnancy loss as well as with other endometrial pathologies.
Collapse
Affiliation(s)
- S K Munro
- The Liggins Institute, The University of Auckland, Auckland 1142, New Zealand
| | | | | | | |
Collapse
|
8
|
Macaluso M, Montanari M, Noto PB, Gregorio V, Bronner C, Giordano A. Epigenetic modulation of estrogen receptor-alpha by pRb family proteins: a novel mechanism in breast cancer. Cancer Res 2007; 67:7731-7. [PMID: 17699777 DOI: 10.1158/0008-5472.can-07-1476] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estrogen receptor-alpha (ER-alpha) plays a crucial role in normal breast development and has also been linked to mammary carcinogenesis and clinical outcome in breast cancer patients. However, ER-alpha gene expression can change during the course of disease and, consequently, therapy resistance can occur. The molecular mechanism governing ER-alpha transcriptional activity and/or silencing is still unclear. Here, we showed that the presence of a specific pRb2/p130 multimolecular complex on the ER-alpha promoter strongly correlates with the methylation status of this gene. Furthermore, we suggested that pRb2/p130 could cooperate with ICBP90 (inverted CCAAT box binding protein of 90 kDa) and DNA methyltransferases in maintaining a specific methylation pattern of ER-alpha gene. The sequence of epigenetic events for establishing and maintaining the silenced state of ER-alpha gene can be locus- or pathway- specific, and the local remodeling of ER-alpha chromatin structure by pRb2/p130 multimolecular complexes may influence its susceptibility to specific DNA methylation. Our novel hypothesis could provide a basis for understanding how the complex pattern of ER-alpha methylation and transcriptional silencing is generated and for understanding the relationship between this pattern and its function during the neoplastic process.
Collapse
Affiliation(s)
- Marcella Macaluso
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Agarwal N, Hardt T, Brero A, Nowak D, Rothbauer U, Becker A, Leonhardt H, Cardoso MC. MeCP2 interacts with HP1 and modulates its heterochromatin association during myogenic differentiation. Nucleic Acids Res 2007; 35:5402-8. [PMID: 17698499 PMCID: PMC2018631 DOI: 10.1093/nar/gkm599] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
There is increasing evidence of crosstalk between epigenetic modifications such as histone and DNA methylation, recognized by HP1 and methyl CpG-binding proteins, respectively. We have previously shown that the level of methyl CpG-binding proteins increased dramatically during myogenesis leading to large-scale heterochromatin reorganization. In this work, we show that the level of HP1 isoforms did not change significantly throughout myogenic differentiation but their localization did. In particular, HP1γ relocalization to heterochromatin correlated with MeCP2 presence. Using co-immunoprecipitation assays, we found that these heterochromatic factors interact in vivo via the chromo shadow domain of HP1 and the first 55 amino acids of MeCP2. We propose that this dynamic interaction of HP1 and MeCP2 increases their concentration at heterochromatin linking two major gene silencing pathways to stabilize transcriptional repression during differentiation.
Collapse
Affiliation(s)
- Noopur Agarwal
- Max Delbrück Center for Molecular Medicine, 13125 Berlin and Ludwig Maximilians University Munich, Biocenter, Department of Biology, 82152 Planegg-Martinsried, Germany
| | - Tanja Hardt
- Max Delbrück Center for Molecular Medicine, 13125 Berlin and Ludwig Maximilians University Munich, Biocenter, Department of Biology, 82152 Planegg-Martinsried, Germany
| | - Alessandro Brero
- Max Delbrück Center for Molecular Medicine, 13125 Berlin and Ludwig Maximilians University Munich, Biocenter, Department of Biology, 82152 Planegg-Martinsried, Germany
| | - Danny Nowak
- Max Delbrück Center for Molecular Medicine, 13125 Berlin and Ludwig Maximilians University Munich, Biocenter, Department of Biology, 82152 Planegg-Martinsried, Germany
| | - Ulrich Rothbauer
- Max Delbrück Center for Molecular Medicine, 13125 Berlin and Ludwig Maximilians University Munich, Biocenter, Department of Biology, 82152 Planegg-Martinsried, Germany
| | - Annette Becker
- Max Delbrück Center for Molecular Medicine, 13125 Berlin and Ludwig Maximilians University Munich, Biocenter, Department of Biology, 82152 Planegg-Martinsried, Germany
| | - Heinrich Leonhardt
- Max Delbrück Center for Molecular Medicine, 13125 Berlin and Ludwig Maximilians University Munich, Biocenter, Department of Biology, 82152 Planegg-Martinsried, Germany
| | - M. Cristina Cardoso
- Max Delbrück Center for Molecular Medicine, 13125 Berlin and Ludwig Maximilians University Munich, Biocenter, Department of Biology, 82152 Planegg-Martinsried, Germany
- *To whom Correspondence should be addressed: +49 30 94062109+49 30 94063343
| |
Collapse
|
10
|
McGraw S, Vigneault C, Sirard MA. Temporal expression of factors involved in chromatin remodeling and in gene regulation during early bovine in vitro embryo development. Reproduction 2007; 133:597-608. [PMID: 17379654 DOI: 10.1530/rep-06-0251] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Distinct epigenetic modification events regulate gene expression and chromatin structure during the period between the immature oocyte and the blastocyst. Throughout this developmental period, important methylation fluctuations occur on genomic DNA and histones. Finding single or combinations of factors, which are at work during this period is essential to understand the entire epigenetic process. With this in mind, we assessed the precise temporal expression profile, during preimplantation embryo development, of 15 key regulators involved in RNA, DNA or histone methylation, chromatin modification or silencing and transcription regulation. To achieve this, real-time RT-PCR was used to quantify the mRNA levels of ATF7IP, DMAP1, EHMT1, EHMT2, HELLS, JARID1A, JARID1B, JMJD1A, JMJD2A, LSD1, MeCP2, METTL3, PRMT2, PRMT5 and RCOR2, in the oocyte and throughout in vitro bovine embryo development. Our results demonstrate that all the 15 key regulators were present to different degrees in the developmental stages tested, and they can be divided into three different groups depending on their respective mRNA profile.
Collapse
Affiliation(s)
- Serge McGraw
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Université Laval, Québec, Canada G1K 7P4
| | | | | |
Collapse
|
11
|
Michelotti GA, Brinkley DM, Morris DP, Smith MP, Louie RJ, Schwinn DA. Epigenetic regulation of human alpha1d-adrenergic receptor gene expression: a role for DNA methylation in Sp1-dependent regulation. FASEB J 2007; 21:1979-93. [PMID: 17384146 PMCID: PMC2279228 DOI: 10.1096/fj.06-7118com] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A growing body of evidence implicates alpha1-adrenergic receptors (alpha1ARs) as potent regulators of growth pathways. The three alpha1AR subtypes (alpha1aAR, alpha1bAR, alpha1dAR) display highly restricted tissue expression that undergoes subtype switching with many pathological stimuli, the mechanistic basis of which remains unknown. To gain insight into transcriptional pathways governing cell-specific regulation of the human alpha1dAR subtype, we cloned and characterized the alpha1dAR promoter region in two human cellular models that display disparate levels of endogenous alpha1dAR expression (SK-N-MC and DU145). Results reveal that alpha1dAR basal expression is regulated by Sp1-dependent binding of two promoter-proximal GC boxes, the mutation of which attenuates alpha1dAR promoter activity 10-fold. Mechanistically, chromatin immunoprecipitation data demonstrate that Sp1 binding correlates with expression of the endogenous gene in vivo, correlating highly with alpha1dAR promoter methylation-dependent silencing of both episomally expressed reporter constructs and the endogenous gene. Further, analysis of methylation status of proximal GC boxes using sodium bisulfite sequencing reveals differential methylation of proximal GC boxes in the two cell lines examined. Together, the data support a mechanism of methylation-dependent disruption of Sp1 binding in a cell-specific manner resulting in repression of basal alpha1dAR expression.
Collapse
MESH Headings
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Base Sequence
- Cell Line, Tumor
- Chromatin/chemistry
- DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors
- DNA Methylation
- Decitabine
- Gene Expression Regulation
- Gene Silencing
- Humans
- Immunoprecipitation
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA, Messenger/biosynthesis
- Receptors, Adrenergic, alpha-1/biosynthesis
- Receptors, Adrenergic, alpha-1/genetics
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sp1 Transcription Factor/metabolism
- Sulfites/pharmacology
- Transcription, Genetic
Collapse
Affiliation(s)
- Gregory A Michelotti
- Department of Pharmacology/Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Batts SA, Raphael Y. Transdifferentiation and its applicability for inner ear therapy. Hear Res 2006; 227:41-7. [PMID: 17070000 DOI: 10.1016/j.heares.2006.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2006] [Revised: 08/16/2006] [Accepted: 08/31/2006] [Indexed: 11/20/2022]
Abstract
During normal development, cells divide, then differentiate to adopt their individual form and function in an organism. Under most circumstances, mature cells cannot transdifferentiate, changing their fate to adopt a different form and function. Because differentiated cells cannot usually divide, the repair of injuries as well as regeneration largely depends on the activation of stem cell reserves. The mature cochlea is an exception among epithelial cell layers in that it lacks stem cells. Consequently, the sensory hair cells that receive sound information cannot be replaced, and their loss results in permanent hearing impairment. The lack of a spontaneous cell replacement mechanism in the organ of Corti, the mammalian auditory sensory epithelium, has led researchers to investigate circumstances in which transdifferentiation does occur. The hope is that this information can be used to design therapies to replace lost hair cells and restore impaired hearing in humans.
Collapse
Affiliation(s)
- Shelley A Batts
- Department of Otolaryngology, Kresge Hearing Research Institute, MSRB-3, Room 9301, Ann Arbor, MI 48109-0648, USA
| | | |
Collapse
|