1
|
Abstract
Deregulation of transcription factors is critical to hallmarks of cancer. Genetic mutations, gene fusions, amplifications or deletions, epigenetic alternations, and aberrant post-transcriptional modification of transcription factors are involved in the regulation of various stages of carcinogenesis, including cancer initiation, progression, and metastasis. Thus, targeting the dysfunctional transcription factors may lead to new cancer therapeutic strategies. However, transcription factors are conventionally considered as "undruggable." Here, we summarize the recent progresses in understanding the regulation of transcription factors in cancers and strategies to target transcription factors and co-factors for preclinical and clinical drug development, particularly focusing on c-Myc, YAP/TAZ, and β-catenin due to their significance and interplays in cancer.
Collapse
Affiliation(s)
- Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
2
|
Lin SH, Wang HK, Yeh KT, Tai HC, Wang HY, Huang LR, Chiu CW, Chung CM, Velmurugan BK. c-MYC expression in T (III/IV) stage oral squamous cell carcinoma (OSCC) patients. Cancer Manag Res 2019; 11:5163-5169. [PMID: 31239771 PMCID: PMC6556540 DOI: 10.2147/cmar.s201943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose: c-MYC has been noted in many tumor types, but its functional significance and clinical utility in oral squamous cell carcinoma (OSCC) are not well known. Here we studied the expression of c-MYC in correlation to clinical outcome in patients with oral squamous cell carcinoma. Methods: The current study, using immunohistochemical staining, first examined c-MYC expression in OSCC patients and further correlated its expression with clinicopathological parameters. Results: c-MYC was expressed in the majority of OSCC patients (n=133). The c-MYC expression is associated with histological grade (P=0.0205) of patients with oral squamous cell carcinoma. Multivariate Cox regression analysis revealed that TN stage (P<0.001), American Joint Committee on Cancer (AJCC) stage (P<0.0001), and tumor differentiation (P=0.0025) were independent factors for overall survival in patients with OSCC except for c-MYC expression (P>0.05). Multiplicative-scale interaction between T stage (III/IV) and low c-MYC expression on mortality risk was identified (P=0.0233). Kaplan-Meier survival analysis demonstrated that oral cancer patients (T III/IV stage) with high c-MYC expression had better survival than those with low and medium c-MYC expression (P=0.0270). Conclusion: Our data indicate that c-MYC is a potential biomarker that can be used as a therapeutic target for treating OSCC patients with T stage (III/IV).
Collapse
Affiliation(s)
- Shu-Hui Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Hsin-Kai Wang
- Public Health Bureau, Tainan City Government, Tainan, Taiwan.,Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Kun-Tu Yeh
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hui-Chun Tai
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hui-Yi Wang
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Lan-Ru Huang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Chun-Wen Chiu
- Department of Emergency Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Chia-Min Chung
- Graduate Institute of BioMedical Sciences, China Medical University, Taichung, Taiwan.,Environment-Omics-Diseases Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Bharath Kumar Velmurugan
- Toxicology and Biomedicine Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
3
|
Villa E, Ali ES, Sahu U, Ben-Sahra I. Cancer Cells Tune the Signaling Pathways to Empower de Novo Synthesis of Nucleotides. Cancers (Basel) 2019; 11:E688. [PMID: 31108873 PMCID: PMC6562601 DOI: 10.3390/cancers11050688] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer cells exhibit a dynamic metabolic landscape and require a sufficient supply of nucleotides and other macromolecules to grow and proliferate. To meet the metabolic requirements for cell growth, cancer cells must stimulate de novo nucleotide synthesis to obtain adequate nucleotide pools to support nucleic acid and protein synthesis along with energy preservation, signaling activity, glycosylation mechanisms, and cytoskeletal function. Both oncogenes and tumor suppressors have recently been identified as key molecular determinants for de novo nucleotide synthesis that contribute to the maintenance of homeostasis and the proliferation of cancer cells. Inactivation of tumor suppressors such as TP53 and LKB1 and hyperactivation of the mTOR pathway and of oncogenes such as MYC, RAS, and AKT have been shown to fuel nucleotide synthesis in tumor cells. The molecular mechanisms by which these signaling hubs influence metabolism, especially the metabolic pathways for nucleotide synthesis, continue to emerge. Here, we focus on the current understanding of the molecular mechanisms by which oncogenes and tumor suppressors modulate nucleotide synthesis in cancer cells and, based on these insights, discuss potential strategies to target cancer cell proliferation.
Collapse
Affiliation(s)
- Elodie Villa
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA; (E.V.); (E.S.A.); (U.S.)
| | - Eunus S. Ali
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA; (E.V.); (E.S.A.); (U.S.)
| | - Umakant Sahu
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA; (E.V.); (E.S.A.); (U.S.)
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA; (E.V.); (E.S.A.); (U.S.)
- Robert H. Lurie Cancer Center, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Li M, Liu Y, Wei Y, Wu C, Meng H, Niu W, Zhou Y, Wang H, Wen Q, Fan S, Li Z, Li X, Zhou J, Cao K, Xiong W, Zeng Z, Li X, Qiu Y, Li G, Zhou M. Zinc-finger protein YY1 suppresses tumor growth of human nasopharyngeal carcinoma by inactivating c-Myc-mediated microRNA-141 transcription. J Biol Chem 2019; 294:6172-6187. [PMID: 30718276 DOI: 10.1074/jbc.ra118.006281] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/18/2019] [Indexed: 12/12/2022] Open
Abstract
Yin Yang 1 (YY1) is a zinc-finger protein that plays critical roles in various biological processes by interacting with DNA and numerous protein partners. YY1 has been reported to play dual biological functions as either an oncogene or tumor suppressor in the development and progression of multiple cancers, but its role in human nasopharyngeal carcinoma (NPC) has not yet been revealed. In this study, we found that YY1 overexpression significantly inhibits cell proliferation and cell-cycle progression from G1 to S and promotes apoptosis in NPC cells. Moreover, we identified YY1 as a component of the c-Myc complex and observed that ectopic expression of YY1 inhibits c-Myc transcriptional activity, as well as the promoter activity and expression of the c-Myc target gene microRNA-141 (miR-141). Furthermore, restoring miR-141 expression could at least partially reverse the inhibitory effect of YY1 on cell proliferation and tumor growth and on the expression of some critical c-Myc targets, such as PTEN/AKT pathway components both in vitro and in vivo We also found that YY1 expression is reduced in NPC tissues, negatively correlates with miR-141 expression and clinical stages in NPC patients, and positively correlates with survival prognosis. Our results reveal a previously unappreciated mechanism in which the YY1/c-Myc/miR-141 axis plays a critical role in NPC progression and may provide some potential and valuable targets for the diagnosis and treatment of NPC.
Collapse
Affiliation(s)
- Mengna Li
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Yukun Liu
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Yanmei Wei
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Chunchun Wu
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Hanbing Meng
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Weihong Niu
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Yao Zhou
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Heran Wang
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013
| | - Qiuyuan Wen
- the Second XiangYa Hospital, Central South University, Changsha, Hunan 410011
| | - Songqing Fan
- the Second XiangYa Hospital, Central South University, Changsha, Hunan 410011
| | - Zheng Li
- the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078; the High Resolution Mass Spectrometry Laboratory of Advanced Research Center, Central South University, Changsha, Hunan 410013
| | - Xiayu Li
- the Third XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jianda Zhou
- the Third XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ke Cao
- the Third XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Xiong
- the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Zhaoyang Zeng
- the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Xiaoling Li
- the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Yuanzheng Qiu
- the Department of Otolaryngology Head and Neck Surgery, the Xiangya Hospital, Central South University, Changsha, Hunan 410008
| | - Guiyuan Li
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Ming Zhou
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078.
| |
Collapse
|
5
|
Li H, Quang D, Guan Y. Anchor: trans-cell type prediction of transcription factor binding sites. Genome Res 2019; 29:281-292. [PMID: 30567711 PMCID: PMC6360811 DOI: 10.1101/gr.237156.118] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 12/13/2018] [Indexed: 12/16/2022]
Abstract
The ENCyclopedia of DNA Elements (ENCODE) consortium has generated transcription factor (TF) binding ChIP-seq data covering hundreds of TF proteins and cell types; however, due to limits on time and resources, only a small fraction of all possible TF-cell type pairs have been profiled. One solution is to build machine learning models trained on currently available epigenomic data sets that can be applied to the remaining missing pairs. A major challenge is that TF binding sites are cell-type-specific, which can be attributed to cellular contexts such as chromatin accessibility. Meanwhile, indirect TF-DNA binding and interactions between TFs complicate this regulatory process. Technical issues such as sequencing biases and batch effects render the prediction task even more challenging. Many pioneering efforts have been made to predict TF binding profiles based on DNA sequence and DNase-seq footprints, but to what extent a model can be generalized to completely untested cell conditions remains unknown. In this study, we describe our first place solution to the 2017 ENCODE-DREAM in vivo TF binding site prediction challenge. By carefully addressing multisource biases and information imbalance across cell types, we created a pipeline that significantly outperforms the current state-of-the-art methods. The proposed method is sufficiently complex enough to model nonlinear interactions between TF binding motifs and chromatin accessibility information up to 1500 bp from the genomic region of interest.
Collapse
Affiliation(s)
- Hongyang Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Daniel Quang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
6
|
Identification of synthetic lethality of PRKDC in MYC-dependent human cancers by pooled shRNA screening. BMC Cancer 2014; 14:944. [PMID: 25495526 PMCID: PMC4320452 DOI: 10.1186/1471-2407-14-944] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 11/20/2014] [Indexed: 01/09/2023] Open
Abstract
Background MYC family members are among the most frequently deregulated oncogenes in human cancers, yet direct therapeutic targeting of MYC in cancer has been challenging thus far. Synthetic lethality provides an opportunity for therapeutic intervention of MYC-driven cancers. Methods A pooled kinase shRNA library screen was performed and next-generation deep sequencing efforts identified that PRKDC was synthetically lethal in cells overexpressing MYC. Genes and proteins of interest were knocked down or inhibited using RNAi technology and small molecule inhibitors, respectively. Quantitative RT-PCR using TaqMan probes examined mRNA expression levels and cell viability was assessed using CellTiter-Glo (Promega). Western blotting was performed to monitor different protein levels in the presence or absence of RNAi or compound treatment. Statistical significance of differences among data sets were determined using unpaired t test (Mann–Whitney test) or ANOVA. Results Inhibition of PRKDC using RNAi (RNA interference) or small molecular inhibitors preferentially killed MYC-overexpressing human lung fibroblasts. Moreover, inducible PRKDC knockdown decreased cell viability selectively in high MYC-expressing human small cell lung cancer cell lines. At the molecular level, we found that inhibition of PRKDC downregulated MYC mRNA and protein expression in multiple cancer cell lines. In addition, we confirmed that overexpression of MYC family proteins induced DNA double-strand breaks; our results also revealed that PRKDC inhibition in these cells led to an increase in DNA damage levels. Conclusions Our data suggest that the synthetic lethality between PRKDC and MYC may in part be due to PRKDC dependent modulation of MYC expression, as well as MYC-induced DNA damage where PRKDC plays a key role in DNA damage repair. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-944) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Ngo T, Barisone GA, Lam KS, Dίaz E. MXD3 regulation of DAOY cell proliferation dictated by time course of activation. BMC Cell Biol 2014; 15:30. [PMID: 25053245 PMCID: PMC4226952 DOI: 10.1186/1471-2121-15-30] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 07/02/2014] [Indexed: 11/25/2022] Open
Abstract
Background MXD3 is a basic-helix-loop-helix-leucine-zipper transcription factor involved in cellular proliferation. In previous studies we demonstrated that knock-down of MXD3 in the human medulloblastoma cell line DAOY resulted in decreased proliferation. Surprisingly, overexpression of MXD3 in DAOY cells also decreased proliferation and increased cell death, suggesting that persistent expression of MXD3 triggers an apoptotic response, perhaps as a fail-safe mechanism. To investigate this apparent paradox in detail we developed a tamoxifen inducible system to analyze the temporal effects of MXD3 in the proliferation and transcriptional response of DAOY cells upon acute induction compared with long-term expression of MXD3. Results We find that acute induction of MXD3 initially promotes cell cycle progression as assessed by a transient increase in bromodeoxyuridine incorporation. However, persistent induction of MXD3 ultimately results in decreased proliferation based on cell counts. Finally, with microarray expression profiling and gene ontology analysis we identify several major pathways enriched in response to acute (immune response, apoptosis, cell cycle) versus persistent (cell adhesion) MXD3 activation. Conclusions In this study, we demonstrate that acute MXD3 activation results in a transient increase in cell proliferation while persistent activation of MXD3 eventually results in an overall decrease in cell number, suggesting that the time course of MXD3 expression dictates the cellular outcome. Microarray expression profiling and gene ontology analysis indicate that MXD3 regulates distinct genes and pathways upon acute induction compared with persistent expression, suggesting that the cellular outcome is specified by changes in MXD3 transcriptional program in a time-dependent manner.
Collapse
Affiliation(s)
| | | | | | - Elva Dίaz
- Department of Pharmacology, UC Davis School of Medicine, 451 Health Sciences Drive, 3503 GBSF, Davis, CA 95616, USA.
| |
Collapse
|
8
|
Verzele D, Madder A. Synthetic Progress in cMyc-Max Oncoprotein Miniaturization: Semi-Online Monitoring Gives Solid-Phase Access to Hydrophobic b(-HLH-)ZIP Peptidosteroid Tweezers. European J Org Chem 2012. [DOI: 10.1002/ejoc.201201235] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Kopecky B, Fritzsch B. The myc road to hearing restoration. Cells 2012; 1:667-98. [PMID: 24710525 PMCID: PMC3901154 DOI: 10.3390/cells1040667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/12/2012] [Accepted: 09/14/2012] [Indexed: 01/01/2023] Open
Abstract
Current treatments for hearing loss, the most common neurosensory disorder, do not restore perfect hearing. Regeneration of lost organ of Corti hair cells through forced cell cycle re-entry of supporting cells or through manipulation of stem cells, both avenues towards a permanent cure, require a more complete understanding of normal inner ear development, specifically the balance of proliferation and differentiation required to form and to maintain hair cells. Direct successful alterations to the cell cycle result in cell death whereas regulation of upstream genes is insufficient to permanently alter cell cycle dynamics. The Myc gene family is uniquely situated to synergize upstream pathways into downstream cell cycle control. There are three Mycs that are embedded within the Myc/Max/Mad network to regulate proliferation. The function of the two ear expressed Mycs, N-Myc and L-Myc were unknown less than two years ago and their therapeutic potentials remain speculative. In this review, we discuss the roles the Mycs play in the body and what led us to choose them to be our candidate gene for inner ear therapies. We will summarize the recently published work describing the early and late effects of N-Myc and L-Myc on hair cell formation and maintenance. Lastly, we detail the translational significance of our findings and what future work must be performed to make the ultimate hearing aid: the regeneration of the organ of Corti.
Collapse
Affiliation(s)
- Benjamin Kopecky
- Department of Biology, 143 Biology Building, University of Iowa, Iowa City, IA 52242, USA.
| | - Bernd Fritzsch
- Department of Biology, 143 Biology Building, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
10
|
Barisone GA, Ngo T, Tran M, Cortes D, Shahi MH, Nguyen TV, Perez-Lanza D, Matayasuwan W, Díaz E. Role of MXD3 in proliferation of DAOY human medulloblastoma cells. PLoS One 2012; 7:e38508. [PMID: 22808009 PMCID: PMC3393725 DOI: 10.1371/journal.pone.0038508] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 05/07/2012] [Indexed: 11/18/2022] Open
Abstract
A subset of medulloblastomas, the most common brain tumor in children, is hypothesized to originate from granule neuron precursors (GNPs) in which the sonic hedgehog (SHH) pathway is over-activated. MXD3, a basic helix-look-helix zipper transcription factor of the MAD family, has been reported to be upregulated during postnatal cerebellar development and to promote GNP proliferation and MYCN expression. Mxd3 is upregulated in mouse models of medulloblastoma as well as in human medulloblastomas. Therefore, we hypothesize that MXD3 plays a role in the cellular events that lead to medulloblastoma biogenesis. In agreement with its proliferative role in GNPs, MXD3 knock-down in DAOY cells resulted in decreased proliferation. Sustained overexpression of MXD3 resulted in decreased cell numbers due to increased apoptosis and cell cycle arrest. Structure-function analysis revealed that the Sin3 interacting domain, the basic domain, and binding to E-boxes are essential for this activity. Microarray-based expression analysis indicated up-regulation of 84 genes and down-regulation of 47 genes. Potential direct MXD3 target genes were identified by ChIP-chip. Our results suggest that MXD3 is necessary for DAOY medulloblastoma cell proliferation. However, increased level and/or duration of MXD3 expression ultimately reduces cell numbers via increased cell death and cell cycle arrest.
Collapse
Affiliation(s)
- Gustavo A. Barisone
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, United States of America
| | - Tin Ngo
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, United States of America
| | - Martin Tran
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, United States of America
| | - Daniel Cortes
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, United States of America
| | - Mehdi H. Shahi
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, United States of America
| | - Tuong-Vi Nguyen
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, United States of America
| | - Daniel Perez-Lanza
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, United States of America
| | - Wanna Matayasuwan
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, United States of America
| | - Elva Díaz
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Abstract
Transcription factors (TFs) are essential for the regulation of gene expression and often form emergent complexes to perform vital roles in cellular processes. In this paper, we focus on the parallel Max and Mlx networks of TFs because of their critical involvement in cell cycle regulation, proliferation, growth, metabolism, and apoptosis. A basic-helix-loop-helix-zipper (bHLHZ) domain mediates the competitive protein dimerization and DNA binding among Max and Mlx network members to form a complex system of cell regulation. To understand the importance of these network interactions, we identified the bHLHZ domain of Max and Mlx network proteins across the animal kingdom and carried out several multivariate statistical analyses. The presence and conservation of Max and Mlx network proteins in animal lineages stemming from the divergence of Metazoa indicate that these networks have ancient and essential functions. Phylogenetic analysis of the bHLHZ domain identified clear relationships among protein families with distinct points of radiation and divergence. Multivariate discriminant analysis further isolated specific amino acid changes within the bHLHZ domain that classify proteins, families, and network configurations. These analyses on Max and Mlx network members provide a model for characterizing the evolution of TFs involved in essential networks.
Collapse
Affiliation(s)
- Lisa G McFerrin
- Bioinformatics Research Center, North Carolina State University, USA.
| | | |
Collapse
|
12
|
Ecevit O, Khan MA, Goss DJ. Kinetic analysis of the interaction of b/HLH/Z transcription factors Myc, Max, and Mad with cognate DNA. Biochemistry 2010; 49:2627-35. [PMID: 20170194 PMCID: PMC2852888 DOI: 10.1021/bi901913a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Myc, Mad, and Max proteins belong to the basic helix-loop-helix leucine zipper family of transcription factors. They bind to a specific hexanucleotide element of DNA, the E-box (CACGTG). To be biologically active, Myc and Mad require dimerization with Max. For the route of complex assembly of these dimers, there are two proposed pathways. In the monomer pathway, two monomers bind DNA sequentially and assemble their dimerization interface while bound to DNA. In the dimer pathway, two monomers form a dimer first prior to association with DNA. The monomer pathway is kinetically favored. In this report, stopped-flow polarization was utilized to determine the rates and temperature dependence of all of the individual steps for both assembly pathways. Myc.Max dimerization had a rate constant approximately 5- and approximately 2-fold higher than those of Max.Max and Mad.Max dimerization, respectively. The protein dimerization rates as well as the dimer-DNA rates were found to be independent of concentration, suggesting conformational changes were rate-limiting. The Arrhenius activation energies for the dimerization of Myc, Mad, and Max with Max were 20.4 +/- 0.8, 29 +/- 0.6, and 40 +/- 0.2 kJ/mol, respectively. Further, rate constants for Max.Max homodimer DNA binding are significantly higher than for Myc.Max and Mad.Max heterodimers binding to DNA. Monomer-DNA binding showed a faster rate than dimer-DNA binding. These studies show the rate-limiting step for the dimer pathway is the formation of protein dimers, and this reaction is slower than formation of protein dimers on the DNA interface, kinetically favoring the monomer pathway.
Collapse
Affiliation(s)
- Ozgur Ecevit
- Department of Chemistry and Biochemistry, Hunter College and Graduate Center of the City University of New York, New York, NY 10065
| | - Mateen A Khan
- Department of Chemistry and Biochemistry, Hunter College and Graduate Center of the City University of New York, New York, NY 10065
| | - Dixie J Goss
- Department of Chemistry and Biochemistry, Hunter College and Graduate Center of the City University of New York, New York, NY 10065
| |
Collapse
|
13
|
Chou CK, Lee DF, Sun HL, Li LY, Lin CY, Huang WC, Hsu JM, Kuo HP, Yamaguchi H, Wang YN, Liu M, Wu HY, Liao PC, Yen CJ, Hung MC. The suppression of MAD1 by AKT-mediated phosphorylation activates MAD1 target genes transcription. Mol Carcinog 2009; 48:1048-58. [PMID: 19526459 DOI: 10.1002/mc.20557] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MAX dimerization protein 1 (MAD1) is a transcription suppressor that antagonizes MYC-mediated transcription activation, and the inhibition mechanism occurs mainly through the competition of target genes' promoter MYC binding sites by MAD1. The promoter binding proteins switch between MYC and MAD1 affects cell proliferation and differentiation. However, little is known about MAD1's regulation process in cancer cells. Here, we present evidence that AKT inhibits MAD1-mediated transcription repression by physical interaction with and phosphorylation of MAD1. Phosphorylation reduces the binding affinity between MAD1 and its target genes' promoter and thereby abolishes its transcription suppression function. Mutation of the phosphorylation site from serine to alanine rescues the DNA-binding ability in the presence of activated AKT. In addition, AKT inhibits MAD1-mediated target genes (hTERT and ODC) transcription repression and promotes cell cycle and cell growth. However, mutated S145A MAD1 abrogates the inhibition by AKT. Thus, our results suggest that phosphorylation of MAD1 by AKT inhibits MAD1-mediated transcription suppression and subsequently activates the transcription of MAD1 target genes.
Collapse
Affiliation(s)
- Chao-Kai Chou
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Grzenda A, Lomberk G, Zhang JS, Urrutia R. Sin3: master scaffold and transcriptional corepressor. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:443-50. [PMID: 19505602 DOI: 10.1016/j.bbagrm.2009.05.007] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 05/21/2009] [Accepted: 05/26/2009] [Indexed: 11/17/2022]
Abstract
Sin3 was isolated over two decades ago as a negative regulator of transcription in budding yeast. Subsequent research has established the protein as a master transcriptional scaffold and corepressor capable of transcriptional silencing via associated histone deacetylases (HDACs). The core Sin3-HDAC complex interacts with a wide variety of repressors and corepressors, providing flexibility and expanded specificity in modulating chromatin structure and transcription. As a result, the Sin3/HDAC complex is involved in an array of biological and cellular processes, including cell cycle progression, genomic stability, embryonic development, and homeostasis. Abnormal recruitment of this complex or alteration of its enzymatic activity has been implicated in neoplastic transformation.
Collapse
Affiliation(s)
- Adrienne Grzenda
- Department of Biochemistry, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
15
|
Cell-restricted immortalization by human papillomavirus correlates with telomerase activation and engagement of the hTERT promoter by Myc. J Virol 2008; 82:11568-76. [PMID: 18818322 DOI: 10.1128/jvi.01318-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The high-risk human papillomaviruses (HPVs) are the causative agents of nearly all cervical cancers and are etiologically linked to additional human cancers, including those of anal, oral, and laryngeal origin. The main transforming genes of the high-risk HPVs are E6 and E7. E6, in addition to its role in p53 degradation, induces hTERT mRNA transcription in genital keratinocytes via interactions with Myc protein, thereby increasing cellular telomerase activity. While the HPV type 16 E6 and E7 genes efficiently immortalize human keratinocytes, they appear to only prolong the life span of human fibroblasts. To examine the molecular basis for this cell-type dependency, we examined the correlation between the ability of E6 to transactivate endogenous and exogenous hTERT promoters and to immortalize genital keratinocytes and fibroblasts. Confirming earlier studies, the E6 and E7 genes were incapable of immortalizing human fibroblasts but did delay senescence. Despite the lack of immortalization, E6 was functional in the fibroblasts, mediating p53 degradation and strongly transactivating an exogenous hTERT promoter. However, E6 failed to transactivate the endogenous hTERT promoter. Coordinately with this failure, we observed that Myc protein was not associated with the endogenous hTERT promoter, most likely due to the extremely low level of Myc expression in these cells and/or to differences in chromatin structure, in contrast with hTERT promoters that we found to be activated by E6 (i.e., the endogenous hTERT promoter in primary keratinoctyes and the exogenous hTERT core promoter in fibroblasts), where Myc is associated with the promoter in either a quiescent or an E6-induced state. These findings are consistent with those of our previous studies on mutagenesis and the knockdown of small interfering RNA, which demonstrated a requirement for Myc in the induction of the hTERT promoter by E6 and suggested that occupancy of the promoter by Myc determines the responsiveness of E6 and the downstream induction of telomerase and cell immortalization.
Collapse
|
16
|
Modelling Myc inhibition as a cancer therapy. Nature 2008; 455:679-83. [PMID: 18716624 DOI: 10.1038/nature07260] [Citation(s) in RCA: 669] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Accepted: 07/11/2008] [Indexed: 12/21/2022]
Abstract
Myc is a pleiotropic basic helix-loop-helix leucine zipper transcription factor that coordinates expression of the diverse intracellular and extracellular programs that together are necessary for growth and expansion of somatic cells. In principle, this makes inhibition of Myc an attractive pharmacological approach for treating diverse types of cancer. However, enthusiasm has been muted by lack of direct evidence that Myc inhibition would be therapeutically efficacious, concerns that it would induce serious side effects by inhibiting proliferation of normal tissues, and practical difficulties in designing Myc inhibitory drugs. We have modelled genetically both the therapeutic impact and the side effects of systemic Myc inhibition in a preclinical mouse model of Ras-induced lung adenocarcinoma by reversible, systemic expression of a dominant-interfering Myc mutant. We show that Myc inhibition triggers rapid regression of incipient and established lung tumours, defining an unexpected role for endogenous Myc function in the maintenance of Ras-dependent tumours in vivo. Systemic Myc inhibition also exerts profound effects on normal regenerating tissues. However, these effects are well tolerated over extended periods and rapidly and completely reversible. Our data demonstrate the feasibility of targeting Myc, a common downstream conduit for many oncogenic signals, as an effective, efficient and tumour-specific cancer therapy.
Collapse
|
17
|
Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM, Karnezis AN, Swigart LB, Nasi S, Evan GI. Modelling Myc inhibition as a cancer therapy. Nature 2008. [PMID: 18716624 DOI: 10.1038/nature07260.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myc is a pleiotropic basic helix-loop-helix leucine zipper transcription factor that coordinates expression of the diverse intracellular and extracellular programs that together are necessary for growth and expansion of somatic cells. In principle, this makes inhibition of Myc an attractive pharmacological approach for treating diverse types of cancer. However, enthusiasm has been muted by lack of direct evidence that Myc inhibition would be therapeutically efficacious, concerns that it would induce serious side effects by inhibiting proliferation of normal tissues, and practical difficulties in designing Myc inhibitory drugs. We have modelled genetically both the therapeutic impact and the side effects of systemic Myc inhibition in a preclinical mouse model of Ras-induced lung adenocarcinoma by reversible, systemic expression of a dominant-interfering Myc mutant. We show that Myc inhibition triggers rapid regression of incipient and established lung tumours, defining an unexpected role for endogenous Myc function in the maintenance of Ras-dependent tumours in vivo. Systemic Myc inhibition also exerts profound effects on normal regenerating tissues. However, these effects are well tolerated over extended periods and rapidly and completely reversible. Our data demonstrate the feasibility of targeting Myc, a common downstream conduit for many oncogenic signals, as an effective, efficient and tumour-specific cancer therapy.
Collapse
Affiliation(s)
- Laura Soucek
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143-0875, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mannava S, Grachtchouk V, Wheeler LJ, Im M, Zhuang D, Slavina EG, Mathews CK, Shewach DS, Nikiforov MA. Direct role of nucleotide metabolism in C-MYC-dependent proliferation of melanoma cells. Cell Cycle 2008; 7:2392-400. [PMID: 18677108 DOI: 10.4161/cc.6390] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To identify C-MYC targets rate-limiting for proliferation of malignant melanoma, we stably inhibited C-MYC in several human metastatic melanoma lines via lentivirus-based shRNAs approximately to the levels detected in normal melanocytes. C-MYC depletion did not significantly affect levels of E2F1 protein reported to regulate expression of many S-phase specific genes, but resulted in the repression of several genes encoding enzymes rate-limiting for dNTP metabolism. These included thymidylate synthase (TS), inosine monophosphate dehydrogenase 2 (IMPDH2) and phosphoribosyl pyrophosphate synthetase 2 (PRPS2). C-MYC depletion also resulted in reduction in the amounts of deoxyribonucleoside triphosphates (dNTPs) and inhibition of proliferation. shRNA-mediated suppression of TS, IMPDH2 or PRPS2 resulted in the decrease of dNTP pools and retardation of the cell cycle progression of melanoma cells in a manner similar to that of C-MYC-depletion in those cells. Reciprocally, concurrent overexpression of cDNAs for TS, IMPDH2 and PRPS2 delayed proliferative arrest caused by inhibition of C-MYC in melanoma cells. Overexpression of C-MYC in normal melanocytes enhanced expression of the above enzymes and increased individual dNTP pools. Analysis of in vivo C-MYC interactions with TS, IMPDH2 and PRPS2 genes confirmed that they are direct C-MYC targets. Moreover, all three proteins express at higher levels in cells from several metastatic melanoma lines compared to normal melanocytes. Our data establish a novel functional link between C-MYC and dNTP metabolism and identify its role in proliferation of tumor cells.
Collapse
Affiliation(s)
- Sudha Mannava
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang H, Hammoudeh DI, Follis AV, Reese BE, Lazo JS, Metallo SJ, Prochownik EV. Improved low molecular weight Myc-Max inhibitors. Mol Cancer Ther 2007; 6:2399-408. [PMID: 17876039 DOI: 10.1158/1535-7163.mct-07-0005] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Compounds that selectively prevent or disrupt the association between the c-Myc oncoprotein and its obligate heterodimeric partner Max (Myc-Max compounds) have been identified previously by high-throughput screening of chemical libraries. Although these agents specifically inhibit the growth of c-Myc-expressing cells, their clinical applicability is limited by their low potency. We describe here several chemical modifications of one of these original compounds, 10058-F4, which result in significant improvements in efficacy. Compared with the parent structure, these analogues show enhanced growth inhibition of c-Myc-expressing cells in a manner that generally correlates with their ability to disrupt c-Myc-Max association and DNA binding. Furthermore, we show by use of a sensitive fluorescence polarization assay that both 10058-F4 and its active analogues bind specifically to monomeric c-Myc. These studies show that improved Myc-Max compounds can be generated by a directed approach involving deliberate modification of an index compound. They further show that the compounds specifically target c-Myc, which exists in a dynamic and relatively unstructured state with only partial and transient alpha-helical content.
Collapse
Affiliation(s)
- Huabo Wang
- Section of Hematology/Oncology, Children's Hospital of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Chen M, Lopes JM. Multiple basic helix-loop-helix proteins regulate expression of the ENO1 gene of Saccharomyces cerevisiae. EUKARYOTIC CELL 2007; 6:786-96. [PMID: 17351075 PMCID: PMC1899243 DOI: 10.1128/ec.00383-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The basic helix-loop-helix (bHLH) eukaryotic transcription factors have the ability to form multiple dimer combinations. This property, together with limited DNA-binding specificity for the E box (CANNTG), makes them ideally suited for combinatorial control of gene expression. We tested the ability of all nine Saccharomyces cerevisiae bHLH proteins to regulate the enolase-encoding gene ENO1. ENO1 was known to be activated by the bHLH protein Sgc1p. Here we show that expression of an ENO1-lacZ reporter was also regulated by the other eight bHLH proteins, namely, Ino2p, Ino4p, Cbf1p, Rtg1p, Rtg3p, Pho4p, Hms1p, and Ygr290wp. ENO1-lacZ expression was also repressed by growth in inositol-choline-containing medium. Epistatic analysis and chromatin immunoprecipitation experiments showed that regulation by Sgc1p, Ino2p, Ino4p, and Cbf1p and repression by inositol-choline required three distal E boxes, E1, E2, and E3. The pattern of bHLH binding to the three E boxes and experiments with two dominant-negative mutant alleles of INO4 and INO2 support the model that bHLH dimer selection affects ENO1-lacZ expression. These results support the general model that bHLH proteins can coordinate different biological pathways via multiple mechanisms.
Collapse
Affiliation(s)
- Meng Chen
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | | |
Collapse
|
21
|
Sauvé S, Naud JF, Lavigne P. The mechanism of discrimination between cognate and non-specific DNA by dimeric b/HLH/LZ transcription factors. J Mol Biol 2006; 365:1163-75. [PMID: 17109882 DOI: 10.1016/j.jmb.2006.10.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 09/21/2006] [Indexed: 12/27/2022]
Abstract
The Myc/Max/Mad proteins are basic region-helix-loop-helix-leucine zipper (b/HLH/LZ) transcription factors that regulate the transcription of numerous genes involved in cell growth and proliferation. The Max protein is the obligate heterodimeric partner of the Myc and Mad proteins. Heterodimerization and DNA binding to target gene promoters are mediated by the b/HLH/LZ domains. Max can also form a homodimeric b/HLH/LZ. The enhanced expression of Myc and binding to promoters of target genes contribute to almost every aspect of tumor biology. However, the detailed mechanism by which dimeric and heterodimeric b/HLH/LZs discriminate cognate DNA (E-Box: CACGTG) from non-specific sequences in the target gene promoters is still unknown. Here, we use the Max b/HLH/LZ homodimer as a model for this class of transcription factors in the characterization and understanding of the mechanism of discrimination between the E-Box and non-specific DNA sequences. We report the characterization of a cognate and a non-specific Max b/HLH/LZ/DNA complex by EMSA, CD and NMR. Our results support a detailed mechanism by which dimeric b/HLH/LZ transcription factors can discriminate E-Box sequences from non-specific DNA. The mechanism proceeds via the conformational selection of fitting b/HLH/LZ homodimers with the basic region only partially helical. Next, the basic region undergoes a DNA-assisted folding or induced-fit. It is this step that provides the discrimination by stabilizing and destabilizing the alpha-helical conformation of the basic region in the cognate and non-specific complexes, respectively. This leads to a low affinity complex with a higher probability of being dissociated and hence to discrimination. A description of the side-chains and nucleotides proposed to be involved in the discrimination process is provided.
Collapse
Affiliation(s)
- Simon Sauvé
- Département de Pharmacologie, Faculté de médecine, Université de Sherbrooke, Sherbrooke, Qc, Canada J1H 5N4
| | | | | |
Collapse
|