1
|
Sui Y, Han Y, Qiu Z, Yan B, Zhao GR. Heterologous Biosynthesis of Taxifolin in Yarrowia lipolytica: Metabolic Engineering and Genome-Scale Metabolic Modeling. Appl Biochem Biotechnol 2025; 197:2012-2034. [PMID: 39630337 DOI: 10.1007/s12010-024-05099-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 03/29/2025]
Abstract
Taxifolin, also known as dihydroquercetin (DHQ), is a flavonoid recognized for its potent antioxidant properties and a wide range of biological activities, including anti-tumor, antiviral, and immunomodulatory effects. Conventional extraction and chemical synthesis methods for taxifolin are often limited by low yields and associated environmental concerns. In this study, we investigated the heterologous biosynthesis of taxifolin in Yarrowia lipolytica through a combination of metabolic engineering and genome-scale metabolic modeling (GSM), complemented by flux balance analysis (FBA). We engineered Yarrowia lipolytica by introducing key biosynthetic genes and successfully synthesized taxifolin using naringenin (NAR) as a substrate, chosen for its low cost. Fermentation experiments demonstrated an optimal taxifolin yield of 10% at a substrate concentration of 200 mg/L naringenin, with a maximum yield of 26.4 mg/L taxifolin at 1 g/L naringenin. To further enhance production, we applied a marker-free Cre-loxP-based gene integration method, allowing stable genomic integration of key genes, which increased taxifolin yield to 34.9 mg/L at 1 g/L naringenin. Additionally, intermediate metabolites eriodictyol (ERI) and dihydrokaempferol (DHK) accumulated to concentrations of 89.2 mg/L and 21.7 mg/L, respectively. Furthermore, we integrated metabolic data into a GSM and applied FBA to optimize the taxifolin biosynthetic pathway. Through Pareto frontier analysis, sensitivity analysis, flux variability analysis, and single gene deletion simulations, we identified key genetic modifications that significantly enhanced taxifolin yield. Overexpression of GND1 and IDP2 increased yields by 94% and 155%, respectively, while knockout of LIP2 led to a 46% increase. Using tri-baffled shake flasks to improve oxygen supply resulted in a 120% yield increase, whereas YPG medium decreased yield by 59%, validating our model's accuracy. To ensure stable and efficient gene expression, we integrated multi-copy constructs into the ribosomal DNA (rDNA) locus of Yarrowia lipolytica, doubling taxifolin production. These results demonstrate the effectiveness of GSM and FBA in addressing bottlenecks in microbial taxifolin biosynthesis and provide a basis for future optimization and large-scale production.
Collapse
Affiliation(s)
- Yuxin Sui
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yumei Han
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zetian Qiu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Bingyang Yan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Guang-Rong Zhao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
2
|
Liu J, Li L, Wang Y, Li B, Cai X, Tang L, Dong S, Yang E, Wu H, Zhang B. Joint engineering of SACE_Lrp and its target MarR enhances the biosynthesis and export of erythromycin in Saccharopolyspora erythraea. Appl Microbiol Biotechnol 2021; 105:2911-2924. [PMID: 33760930 DOI: 10.1007/s00253-021-11228-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 11/24/2022]
Abstract
The Lrp and MarR families are two groups of transcriptional regulators widely distributed among prokaryotes. However, the hierarchical-regulatory relationship between the Lrp family and the MarR family remains unknown. Our previous study found that an Lrp (SACE_Lrp) from Saccharopolyspora erythraea indirectly repressed the biosynthesis of erythromycin. In this study, we characterized a novel MarR family protein (SACE_6745) from S. erythraea, which is controlled by SACE_Lrp and plays a direct regulatory role in erythromycin biosynthesis and export. SACE_Lrp directly regulated the expression of marR by specifically binding a precise site OM (5'-CTCCGGGAACCATT-3'). Gene disruption of marR increased the production of erythromycin by 45% in S. erythraea A226. We found that MarR has direct DNA-binding activity for the promoter regions of the erythromycin biosynthetic genes, as well as an ABC exporter SACE_2701-2702 which was genetically proved to be responsible for erythromycin efflux. Disruption of SACE_Lrp in industrial S. erythraea WB was an efficient strategy to enhance erythromycin production. Herein, we jointly engineered SACE_Lrp and its target MarR by deleting marR in WBΔSACE_Lrp, resulting in 20% increase in erythromycin yield in mutant WBΔLrpΔmarR compared to WBΔSACE_Lrp, and 39% to WB. Overall, our findings provide new insights into the hierarchical-regulatory relationship of Lrp and MarR proteins and new avenues for coordinating antibiotic biosynthesis and export by joint engineering regulators in actinomycetes. KEY POINTS: • The hierarchical-regulatory relationship between SACE_Lrp and MarR was identified. • MarR directly controlled the expression of erythromycin biosynthesis and export genes. • Joint engineering of SACE_Lrp-MarR regulatory element enhanced erythromycin production.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Long Li
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yunxia Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Bowen Li
- Institute of Physical Science and Information Technology, School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Xinlu Cai
- Institute of Physical Science and Information Technology, School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Lijuan Tang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Shengnan Dong
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Endong Yang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Hang Wu
- Institute of Physical Science and Information Technology, School of Life Sciences, Anhui University, Hefei, 230601, China.
| | - Buchang Zhang
- Institute of Physical Science and Information Technology, School of Life Sciences, Anhui University, Hefei, 230601, China.
| |
Collapse
|
3
|
Stanford J, Charlton K, Stefoska-Needham A, Ibrahim R, Lambert K. The gut microbiota profile of adults with kidney disease and kidney stones: a systematic review of the literature. BMC Nephrol 2020; 21:215. [PMID: 32503496 PMCID: PMC7275316 DOI: 10.1186/s12882-020-01805-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
Background There is mounting evidence that individuals with kidney disease and kidney stones have an abnormal gut microbiota composition. No studies to date have summarised the evidence to categorise how the gut microbiota profile of these individuals may differ from controls. Synthesis of this evidence is essential to inform future clinical trials. This systematic review aims to characterise differences of the gut microbial community in adults with kidney disease and kidney stones, as well as to describe the functional capacity of the gut microbiota and reporting of diet as a confounder in these studies. Methods Included studies were those that investigated the gut microbial community in adults with kidney disease or kidney stones and compared this to the profile of controls. Six scientific databases (CINHAL, Medline, PubMed, Scopus, Web of Science and Cochrane Library), as well as selected grey literature sources, were searched. Quality assessment was undertaken independently by three authors. The system of evidence level criteria was employed to quantitatively evaluate the alteration of microbiota by strictly considering the number, methodological quality and consistency of the findings. Additional findings relating to altered functions of the gut microbiota, dietary intakes and dietary methodologies used were qualitatively summarised. Results Twenty-five articles met the eligibility criteria and included data from a total of 892 adults with kidney disease or kidney stones and 1400 controls. Compared to controls, adults with kidney disease had increased abundances of several microbes including Enterobacteriaceae, Streptococcaceae, Streptococcus and decreased abundances of Prevotellaceae, Prevotella, Prevotella 9 and Roseburia among other taxa. Adults with kidney stones also had an altered microbial composition with variations to Bacteroides, Lachnospiraceae NK4A136 group, Ruminiclostridium 5 group, Dorea, Enterobacter, Christensenellaceae and its genus Christensenellaceae R7 group. Differences in the functional potential of the microbial community between controls and adults with kidney disease or kidney stones were also identified. Only three of the 25 articles presented dietary data, and of these studies, only two used a valid dietary assessment method. Conclusions The gut microbiota profile of adults with kidney disease and kidney stones differs from controls. Future study designs should include adequate reporting of important confounders such as dietary intake to assist with interpretation of findings.
Collapse
Affiliation(s)
- Jordan Stanford
- University of Wollongong, School of Medicine, Faculty of Science, Medicine and Health, Wollongong, New South Wales, 2522, Australia. .,Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia.
| | - Karen Charlton
- University of Wollongong, School of Medicine, Faculty of Science, Medicine and Health, Wollongong, New South Wales, 2522, Australia.,University of Wollongong, Health Impacts Research Cluster, Wollongong, New South Wales, 2522, Australia
| | - Anita Stefoska-Needham
- University of Wollongong, School of Medicine, Faculty of Science, Medicine and Health, Wollongong, New South Wales, 2522, Australia.,University of Wollongong, Health Impacts Research Cluster, Wollongong, New South Wales, 2522, Australia
| | - Rukayat Ibrahim
- University of Surrey, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, Guildford, GU2 7XH, UK
| | - Kelly Lambert
- University of Wollongong, School of Medicine, Faculty of Science, Medicine and Health, Wollongong, New South Wales, 2522, Australia.,University of Wollongong, Health Impacts Research Cluster, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
4
|
Pham JV, Yilma MA, Feliz A, Majid MT, Maffetone N, Walker JR, Kim E, Cho HJ, Reynolds JM, Song MC, Park SR, Yoon YJ. A Review of the Microbial Production of Bioactive Natural Products and Biologics. Front Microbiol 2019; 10:1404. [PMID: 31281299 PMCID: PMC6596283 DOI: 10.3389/fmicb.2019.01404] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/04/2019] [Indexed: 12/24/2022] Open
Abstract
A variety of organisms, such as bacteria, fungi, and plants, produce secondary metabolites, also known as natural products. Natural products have been a prolific source and an inspiration for numerous medical agents with widely divergent chemical structures and biological activities, including antimicrobial, immunosuppressive, anticancer, and anti-inflammatory activities, many of which have been developed as treatments and have potential therapeutic applications for human diseases. Aside from natural products, the recent development of recombinant DNA technology has sparked the development of a wide array of biopharmaceutical products, such as recombinant proteins, offering significant advances in treating a broad spectrum of medical illnesses and conditions. Herein, we will introduce the structures and diverse biological activities of natural products and recombinant proteins that have been exploited as valuable molecules in medicine, agriculture and insect control. In addition, we will explore past and ongoing efforts along with achievements in the development of robust and promising microorganisms as cell factories to produce biologically active molecules. Furthermore, we will review multi-disciplinary and comprehensive engineering approaches directed at improving yields of microbial production of natural products and proteins and generating novel molecules. Throughout this article, we will suggest ways in which microbial-derived biologically active molecular entities and their analogs could continue to inspire the development of new therapeutic agents in academia and industry.
Collapse
Affiliation(s)
- Janette V. Pham
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Mariamawit A. Yilma
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Adriana Feliz
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Murtadha T. Majid
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Nicholas Maffetone
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Jorge R. Walker
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Eunji Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| | - Hyo Je Cho
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, South Korea
| | - Jared M. Reynolds
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Myoung Chong Song
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| | - Sung Ryeol Park
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
- Natural Products Discovery Institute, Doylestown, PA, United States
| | - Yeo Joon Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
5
|
Characterization and engineering of the Lrp/AsnC family regulator SACE_5717 for erythromycin overproduction in Saccharopolyspora erythraea. J Ind Microbiol Biotechnol 2019; 46:1013-1024. [PMID: 31016583 DOI: 10.1007/s10295-019-02178-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/04/2019] [Indexed: 10/27/2022]
Abstract
In this work, we found that the Lrp/AsnC family protein SACE_5717 negatively regulated erythromycin biosynthesis in S. erythraea. Disruption of SACE_5717 led to a 27% improvement in the yield of erythromycin in S. erythraea A226. SACE_5717 directly repressed its own gene expression, as well as that of the adjacent gene SACE_5716 by binding to the target sequence 5'-GAACGTTCGCCGTCACGCC-3'. The predicted LysE superfamily protein SACE_5716 directly influenced the export of lysine, histidine, threonine and glycine in S. erythraea. Arginine, tyrosine and tryptophan were characterized as the effectors of SACE_5717 by weakening the binding affinity of SACE_5717. In the industrial S. erythraea WB strain, deletion of SACE_5717 (WBΔSACE_5717) increased erythromycin yield by 20%, and by 36% when SACE_5716 was overexpressed in WBΔSACE_5717 (WBΔSACE_5717/5716). In large-scale 5-L fermentation experiment, erythromycin yield in the engineered strain WBΔSACE_5717/5716 reached 4686 mg/L, a 41% enhancement over 3323 mg/L of the parent WB strain.
Collapse
|
6
|
You D, Wang MM, Yin BC, Ye BC. Precursor Supply for Erythromycin Biosynthesis: Engineering of Propionate Assimilation Pathway Based on Propionylation Modification. ACS Synth Biol 2019; 8:371-380. [PMID: 30657660 DOI: 10.1021/acssynbio.8b00396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Erythromycin is necessary in medical treatment and known to be biosynthesized with propionyl-CoA as direct precursor. Oversupply of propionyl-CoA induced hyperpropionylation, which was demonstrated as harmful for erythromycin synthesis in Saccharopolyspora erythraea. Herein, we identified three propionyl-CoA synthetases regulated by propionylation, and one propionyl-CoA synthetase SACE_1780 revealed resistance to propionylation. A practical strategy for raising the precursor (propionyl-CoA) supply bypassing the feedback inhibition caused by propionylation was developed through two approaches: deletion of the propionyltransferase AcuA, and SACE_1780 overexpression. The constructed Δ acuA strain presented a 10% increase in erythromycin yield; SACE_1780 overexpression strain produced 33% higher erythromycin yield than the wildtype strain NRRL2338 and 22% higher erythromycin yield than the industrial high yield Ab strain. These findings uncover the role of protein acylation in precursor supply for antibiotics biosynthesis and provide efficient post-translational modification-metabolic engineering strategy (named as PTM-ME) in synthetic biology for improvement of secondary metabolites.
Collapse
Affiliation(s)
- Di You
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Miao-Miao Wang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bin-Cheng Yin
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang 832000, China
| |
Collapse
|
7
|
Wu H, Wang Y, Yuan L, Mao Y, Wang W, Zhu L, Wu P, Fu C, Müller R, Weaver DT, Zhang L, Zhang B. Inactivation of SACE_3446, a TetR family transcriptional regulator, stimulates erythromycin production in Saccharopolyspora erythraea. Synth Syst Biotechnol 2016; 1:39-46. [PMID: 29062926 PMCID: PMC5640589 DOI: 10.1016/j.synbio.2016.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 01/08/2016] [Accepted: 01/10/2016] [Indexed: 11/29/2022] Open
Abstract
Erythromycin A is a widely used antibiotic produced by Saccharopolyspora erythraea; however, its biosynthetic cluster lacks a regulatory gene, limiting the yield enhancement via regulation engineering of S. erythraea. Herein, six TetR family transcriptional regulators (TFRs) belonging to three genomic context types were individually inactivated in S. erythraea A226, and one of them, SACE_3446, was proved to play a negative role in regulating erythromycin biosynthesis. EMSA and qRT-PCR analysis revealed that SACE_3446 covering intact N-terminal DNA binding domain specifically bound to the promoter regions of erythromycin biosynthetic gene eryAI, the resistant gene ermE and the adjacent gene SACE_3447 (encoding a long-chain fatty-acid CoA ligase), and repressed their transcription. Furthermore, we explored the interaction relationships of SACE_3446 and previously identified TFRs (SACE_3986 and SACE_7301) associated with erythromycin production. Given demonstrated relatively independent regulation mode of SACE_3446 and SACE_3986 in erythromycin biosynthesis, we individually and concomitantly inactivated them in an industrial S. erythraea WB. Compared with WB, the WBΔ3446 and WBΔ3446Δ3986 mutants respectively displayed 36% and 65% yield enhancement of erythromycin A, following significantly elevated transcription of eryAI and ermE. When cultured in a 5 L fermentor, erythromycin A of WBΔ3446 and WBΔ3446Δ3986 successively reached 4095 mg/L and 4670 mg/L with 23% and 41% production improvement relative to WB. The strategy reported here will be useful to improve antibiotics production in other industrial actinomycete.
Collapse
Affiliation(s)
- Hang Wu
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Yansheng Wang
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Li Yuan
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Yongrong Mao
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Weiwei Wang
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Lin Zhu
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Panpan Wu
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Chengzhang Fu
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,Helmholtz Institute for Pharmaceutical Research, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, P.O. Box 15115, 66041 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, P.O. Box 15115, 66041 Saarbrücken, Germany
| | - David T Weaver
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Lixin Zhang
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China.,CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Buchang Zhang
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| |
Collapse
|
8
|
Subathra Devi C, Saini A, Rastogi S, Jemimah Naine S, Mohanasrinivasan V. Strain improvement and optimization studies for enhanced production of erythromycin in bagasse based medium using Saccharopolyspora erythraea MTCC 1103. 3 Biotech 2015; 5:23-31. [PMID: 28324355 PMCID: PMC4327752 DOI: 10.1007/s13205-013-0186-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 11/20/2013] [Indexed: 10/25/2022] Open
Abstract
In the present study, Saccharopolyspora erythraea MTCC 1103 was used for the enhanced production of erythromycin. To enhance the yield of erythromycin, effects of various parameters such as bagasse concentration, organic nitrogen source, inorganic nitrogen source, pH and temperature were analysed. It was found that bagasse can be used as an alternate carbon source in erythromycin production medium. Erythromycin production in the new formulation of bagasse based medium was found to be 512 mg/L which was 28 % higher than glucose based medium. Strain improvement was done by random UV-mutagenesis. When compared to wild type strain, mutant strain showed 40 % higher yield in production medium. Erythromycin potency assay and HPLC analysis were performed to confirm the presence of erythromycin in the partially purified samples. These optimized conditions could be used for the commercial production of this unique antibiotic which gave significant industrial perspectives.
Collapse
|
9
|
Li YY, Chang X, Yu WB, Li H, Ye ZQ, Yu H, Liu BH, Zhang Y, Zhang SL, Ye BC, Li YX. Systems perspectives on erythromycin biosynthesis by comparative genomic and transcriptomic analyses of S. erythraea E3 and NRRL23338 strains. BMC Genomics 2013; 14:523. [PMID: 23902230 PMCID: PMC3733707 DOI: 10.1186/1471-2164-14-523] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/26/2013] [Indexed: 11/20/2022] Open
Abstract
Background S. erythraea is a Gram-positive filamentous bacterium used for the industrial-scale production of erythromycin A which is of high clinical importance. In this work, we sequenced the whole genome of a high-producing strain (E3) obtained by random mutagenesis and screening from the wild-type strain NRRL23338, and examined time-series expression profiles of both E3 and NRRL23338. Based on the genomic data and transcriptpmic data of these two strains, we carried out comparative analysis of high-producing strain and wild-type strain at both the genomic level and the transcriptomic level. Results We observed a large number of genetic variants including 60 insertions, 46 deletions and 584 single nucleotide variations (SNV) in E3 in comparison with NRRL23338, and the analysis of time series transcriptomic data indicated that the genes involved in erythromycin biosynthesis and feeder pathways were significantly up-regulated during the 60 hours time-course. According to our data, BldD, a previously identified ery cluster regulator, did not show any positive correlations with the expression of ery cluster, suggesting the existence of alternative regulation mechanisms of erythromycin synthesis in S. erythraea. Several potential regulators were then proposed by integration analysis of genomic and transcriptomic data. Conclusion This is a demonstration of the functional comparative genomics between an industrial S. erythraea strain and the wild-type strain. These findings help to understand the global regulation mechanisms of erythromycin biosynthesis in S. erythraea, providing useful clues for genetic and metabolic engineering in the future.
Collapse
|
10
|
Comparative genomics and transcriptional profiles of Saccharopolyspora erythraea NRRL 2338 and a classically improved erythromycin over-producing strain. Microb Cell Fact 2012; 11:32. [PMID: 22401291 PMCID: PMC3359211 DOI: 10.1186/1475-2859-11-32] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 03/08/2012] [Indexed: 11/10/2022] Open
Abstract
Background The molecular mechanisms altered by the traditional mutation and screening approach during the improvement of antibiotic-producing microorganisms are still poorly understood although this information is essential to design rational strategies for industrial strain improvement. In this study, we applied comparative genomics to identify all genetic changes occurring during the development of an erythromycin overproducer obtained using the traditional mutate-and- screen method. Results Compared with the parental Saccharopolyspora erythraea NRRL 2338, the genome of the overproducing strain presents 117 deletion, 78 insertion and 12 transposition sites, with 71 insertion/deletion sites mapping within coding sequences (CDSs) and generating frame-shift mutations. Single nucleotide variations are present in 144 CDSs. Overall, the genomic variations affect 227 proteins of the overproducing strain and a considerable number of mutations alter genes of key enzymes in the central carbon and nitrogen metabolism and in the biosynthesis of secondary metabolites, resulting in the redirection of common precursors toward erythromycin biosynthesis. Interestingly, several mutations inactivate genes coding for proteins that play fundamental roles in basic transcription and translation machineries including the transcription anti-termination factor NusB and the transcription elongation factor Efp. These mutations, along with those affecting genes coding for pleiotropic or pathway-specific regulators, affect global expression profile as demonstrated by a comparative analysis of the parental and overproducer expression profiles. Genomic data, finally, suggest that the mutate-and-screen process might have been accelerated by mutations in DNA repair genes. Conclusions This study helps to clarify the mechanisms underlying antibiotic overproduction providing valuable information about new possible molecular targets for rationale strain improvement.
Collapse
|
11
|
Carata E, Peano C, Tredici SM, Ferrari F, Talà A, Corti G, Bicciato S, De Bellis G, Alifano P. Phenotypes and gene expression profiles of Saccharopolyspora erythraea rifampicin-resistant (rif) mutants affected in erythromycin production. Microb Cell Fact 2009; 8:18. [PMID: 19331655 PMCID: PMC2667423 DOI: 10.1186/1475-2859-8-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 03/30/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is evidence from previous works that bacterial secondary metabolism may be stimulated by genetic manipulation of RNA polymerase (RNAP). In this study we have used rifampicin selection as a strategy to genetically improve the erythromycin producer Saccharopolyspora erythraea. RESULTS Spontaneous rifampicin-resistant (rif) mutants were isolated from the parental strain NRRL2338 and two rif mutations mapping within rpoB, S444F and Q426R, were characterized. With respect to the parental strain, S444F mutants exhibited higher respiratory performance and up to four-fold higher final erythromycin yields; in contrast, Q426R mutants were slow-growing, developmental-defective and severely impaired in erythromycin production. DNA microarray analysis demonstrated that these rif mutations deeply changed the transcriptional profile of S. erythraea. The expression of genes coding for key enzymes of carbon (and energy) and nitrogen central metabolism was dramatically altered in turn affecting the flux of metabolites through erythromycin feeder pathways. In particular, the valine catabolic pathway that supplies propionyl-CoA for biosynthesis of the erythromycin precursor 6-deoxyerythronolide B was strongly up-regulated in the S444F mutants, while the expression of the biosynthetic gene cluster of erythromycin (ery) was not significantly affected. In contrast, the ery cluster was down-regulated (<2-fold) in the Q426R mutants. These strains also exhibited an impressive stimulation of the nitrogen regulon, which may contribute to lower erythromycin yields as erythromycin production was strongly inhibited by ammonium. CONCLUSION Rifampicin selection is a simple and reliable tool to investigate novel links between primary and secondary metabolism and morphological differentiation in S. erythraea and to improve erythromycin production. At the same time genome-wide analysis of expression profiles using DNA microarrays allowed information to be gained about the mechanisms underlying the stimulatory/inhibitory effects of the rif mutations on erythromycin production.
Collapse
Affiliation(s)
- Elisabetta Carata
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Reeves AR, Brikun IA, Cernota WH, Leach BI, Gonzalez MC, Weber JM. Engineering of the methylmalonyl-CoA metabolite node of Saccharopolyspora erythraea for increased erythromycin production. Metab Eng 2007; 9:293-303. [PMID: 17482861 PMCID: PMC2722834 DOI: 10.1016/j.ymben.2007.02.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 01/23/2007] [Accepted: 02/27/2007] [Indexed: 10/23/2022]
Abstract
Engineering of the methylmalonyl-CoA (mmCoA) metabolite node of the Saccharopolyspora erythraea wild-type strain through duplication of the mmCoA mutase (MCM) operon led to a 50% increase in erythromycin production in a high-performance oil-based fermentation medium. The MCM operon was carried on a 6.8kb DNA fragment in a plasmid which was inserted by homologous recombination into the S. erythraea chromosome. The fragment contained one uncharacterized gene, ORF1; three MCM related genes, mutA, mutB, meaB; and one gntR-family regulatory gene, mutR. Additional strains were constructed containing partial duplications of the MCM operon, as well as a knockout of ORF1. None of these strains showed any significant alteration in their erythromycin production profile. The combined results showed that increased erythromycin production only occurred in a strain containing a duplication of the entire MCM operon including mutR and a predicted stem-loop structure overlapping the 3' terminus of the mutR coding sequence.
Collapse
Affiliation(s)
- Andrew R Reeves
- Fermalogic Inc. Research and Development, 2201 West Campbell Park Drive, Chicago, IL 60612, US
| | | | | | | | | | | |
Collapse
|
13
|
Mutka SC, Bondi SM, Carney JR, Da Silva NA, Kealey JT. Metabolic pathway engineering for complex polyketide biosynthesis in Saccharomyces cerevisiae. FEMS Yeast Res 2006; 6:40-7. [PMID: 16423069 DOI: 10.1111/j.1567-1356.2005.00001.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Polyketides are a diverse group of natural products with significance in human and veterinary medicine. Because polyketides are structurally complex molecules and fermentation is the most commercially viable route of production, a generic heterologous host system for high-level polyketide production is desirable. Saccharomyces cerevisiae has been shown to be an excellent production host for a simple polyketide, yielding 1.7 g of 6-methylsalicylic acid per liter of culture in un-optimized shake-flask fermentations. However, a barrier to the heterologous production of more complex 'modular' polyketides in S. cerevisiae is the lack of required polyketide precursor pathways. In this work, we describe the introduction into S. cerevisiae of pathways for the production of methylmalonyl-coenzyme A (CoA), a precursor for complex polyketides, by both propionyl-CoA-dependent and propionyl-CoA-independent routes. Furthermore, we demonstrate that the methylmalonyl-CoA produced in the engineered yeast strains is used in vivo for the production of a polyketide product, a triketide lactone.
Collapse
|