1
|
Odroniec A, Olszewska M, Kurpisz M. Epigenetic markers in the embryonal germ cell development and spermatogenesis. Basic Clin Androl 2023; 33:6. [PMID: 36814207 PMCID: PMC9948345 DOI: 10.1186/s12610-022-00179-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/25/2022] [Indexed: 02/24/2023] Open
Abstract
Spermatogenesis is the process of generation of male reproductive cells from spermatogonial stem cells in the seminiferous epithelium of the testis. During spermatogenesis, key spermatogenic events such as stem cell self-renewal and commitment to meiosis, meiotic recombination, meiotic sex chromosome inactivation, followed by cellular and chromatin remodeling of elongating spermatids occur, leading to sperm cell production. All the mentioned events are at least partially controlled by the epigenetic modifications of DNA and histones. Additionally, during embryonal development in primordial germ cells, global epigenetic reprogramming of DNA occurs. In this review, we summarized the most important epigenetic modifications in the particular stages of germ cell development, in DNA and histone proteins, starting from primordial germ cells, during embryonal development, and ending with histone-to-protamine transition during spermiogenesis.
Collapse
Affiliation(s)
- Amadeusz Odroniec
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60–479 Poznan, Poland
| | - Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60–479 Poznan, Poland
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60–479 Poznan, Poland
| |
Collapse
|
2
|
Abu El-Makarem MA, Kamel MF, Mohamed AA, Ali HA, Mohamed MR, Mohamed AEDM, El-Said AM, Ameen MG, Hassnine AA, Hassan HA. Down-regulation of hepatic expression of GHR/STAT5/IGF-1 signaling pathway fosters development and aggressiveness of HCV-related hepatocellular carcinoma: Crosstalk with Snail-1 and type 2 transforming growth factor-beta receptor. PLoS One 2022; 17:e0277266. [PMID: 36374927 PMCID: PMC9662744 DOI: 10.1371/journal.pone.0277266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background and aims So far, few clinical trials are available concerning the role of growth hormone receptor (GHR)/signal transducer and activator of transcription 5 (STAT5)/insulin like growth factor-1 (IGF-1) axis in hepatocarcinogenesis. The aim of this study was to evaluate the hepatic expression of GHR/STAT5/IGF-1 signaling pathway in hepatocellular carcinoma (HCC) patients and to correlate the results with the clinico-pathological features and disease outcome. The interaction between this signaling pathway and some inducers of epithelial-mesenchymal transition (EMT), namely Snail-1 and type 2 transforming growth factor-beta receptor (TGFBR2) was studied too. Material and methods A total of 40 patients with HCV-associated HCC were included in this study. They were compared to 40 patients with HCV-related cirrhosis without HCC, and 20 healthy controls. The hepatic expression of GHR, STAT5, IGF-1, Snail-1 and TGFBR2 proteins were assessed by immunohistochemistry. Results Compared with cirrhotic patients without HCC and healthy controls, cirrhotic patients with HCC had significantly lower hepatic expression of GHR, STAT5, and IGF-1proteins. They also displayed significantly lower hepatic expression of TGFBR2, but higher expression of Snail-1 versus the non-HCC cirrhotic patients and controls. Serum levels of alpha-fetoprotein (AFP) showed significant negative correlations with hepatic expression of GHR (r = -0.31; p = 0.029) and STAT5 (r = -0.29; p = 0.04). Hepatic expression of Snail-1 also showed negative correlations with GHR, STAT5, and IGF-1 expression (r = -0.55, p = 0.02; r = -0.472, p = 0.035, and r = -0.51, p = 0.009, respectively), whereas, hepatic expression of TGFBR2 was correlated positively with the expression of all these proteins (r = 0.47, p = 0.034; 0.49, p = 0.023, and r = 0.57, p<0.001, respectively). Moreover, we reported that decreased expression of GHR was significantly associated with serum AFP level>100 ng/ml (p = 0.048), increased tumor size (p = 0.02), vascular invasion (p = 0.002), and advanced pathological stage (p = 0.01). Similar significant associations were found between down-regulation of STAT5 expression and AFP level > 100 ng/ml (p = 0.006), vascular invasion (p = 0.009), and advanced tumor stage (p = 0.007). Also, attenuated expression of IGF-1 showed a significant association with vascular invasion (p < 0.001). Intriguingly, we detected that lower expression of GHR, STAT5 and IGF-1 were considered independent predictors for worse outcome in HCC. Conclusion Decreased expression of GHR/STAT5/IGF-1 signaling pathway may have a role in development, aggressiveness, and worse outcome of HCV-associated HCC irrespective of the liver functional status. Snail-1 and TGFBR2 as inducers of EMT may be key players. However, large prospective multicenter studies are needed to validate these results.
Collapse
Affiliation(s)
- Mona A. Abu El-Makarem
- Department of Internal Medicine, School of Medicine, Minia University, Minia, Egypt
- * E-mail:
| | - Mariana F. Kamel
- Department of Pathology, School of Medicine, Minia University, Minia, Egypt
- Department of Pathology, Minia Oncology Center, Minia, Egypt
| | - Ahmed A. Mohamed
- Department of Internal Medicine, School of Medicine, Minia University, Minia, Egypt
| | - Hisham A. Ali
- Department of Internal Medicine, School of Medicine, Minia University, Minia, Egypt
| | - Mahmoud R. Mohamed
- Department of Internal Medicine, School of Medicine, Minia University, Minia, Egypt
| | | | - Ahmed M. El-Said
- Department of Internal Medicine, School of Medicine, Minia University, Minia, Egypt
| | - Mahmoud G. Ameen
- Department of Pathology, South Egypt Cancer Institute, Assuit University, Assuit, Egypt
| | - Alshymaa A. Hassnine
- Department of Tropical Medicine and Gastroenterology, School of Medicine, Minia University, Minia, Egypt
| | - Hatem A. Hassan
- Department of Internal Medicine, School of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
3
|
Korenfeld HT, Avram-Shperling A, Zukerman Y, Iluz A, Boocholez H, Ben-Shimon L, Ben-Aroya S. Reversal of histone H2B mono-ubiquitination is required for replication stress recovery. DNA Repair (Amst) 2022; 119:103387. [DOI: 10.1016/j.dnarep.2022.103387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 07/11/2022] [Accepted: 08/09/2022] [Indexed: 11/15/2022]
|
4
|
Bacheva AV, Gotmanova NN, Belogurov AA, Kudriaeva AA. Control of Genome through Variative Nature of Histone-Modifying Ubiquitin Ligases. BIOCHEMISTRY (MOSCOW) 2021; 86:S71-S95. [PMID: 33827401 DOI: 10.1134/s0006297921140066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Covalent attachment of ubiquitin residue is not only the proteasomal degradation signal, but also a widespread posttranslational modification of cellular proteins in eukaryotes. One of the most important targets of the regulatory ubiquitination are histones. Localization of ubiquitin residue in different regions of the nucleosome attracts a strictly determined set of cellular factors with varied functionality. Depending on the type of histone and the particular lysine residue undergoing modification, histone ubiquitination can lead both to transcription activation and to gene repression, as well as contribute to DNA repair via different mechanisms. An extremely interesting feature of the family of RING E3 ubiquitin ligases catalyzing histone ubiquitination is the striking structural diversity of the domains providing high specificity of modification very similar initial targets. It is obvious that further elucidation of peculiarities of the ubiquitination system involved in histone modification, as well as understanding of physiological role of this process in the maintenance of homeostasis of both single cells and the entire organism, will substantially expand the possibilities of treating a number of socially significant diseases.
Collapse
Affiliation(s)
- Anna V Bacheva
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | - Alexey A Belogurov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Anna A Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|
5
|
Sar P, Dalai S. CRISPR/Cas9 in epigenetics studies of health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:309-343. [PMID: 34127198 DOI: 10.1016/bs.pmbts.2021.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetics is the heritable phenotypic changes without altering the genotype. Epigenetic processes are such as histone methylation, acetylation, ubiquitination, sumoylation, phosphorylation, ADP ribosylation, DNA methylation and non-coding RNAs interactions associated with structural changes in chromatin. The change of structure is either open chromatin for "active" state or closed chromatin for "inactive" state, that regulates important biological phenomenon like chromatin condensation, gene expression, DNA repair, cellular development, differentiation and homeostasis, etc. However, dysregulation of epigenetic patterns causes diseases like cancer, diabetes, neurological disorder, infectious diseases, autoimmunity etc. Besides, the most important clinical uses of Epigenetics studies are i. identification of disease biomarkers and ii. development of their therapeutics. Epigenetic therapies include epi-drugs, combinatorial therapy, nanocarriers, plant-derived products that are being used for changing the epigenetic pattern to reverse gene expression. However, the developed epi- drugs cause off-target gene and transposable elements activation; promote mutagenesis and carcinogenesis in normal cells, are the major hurdles regarding their clinical use. Therefore, advanced epigenetic therapeutics are required to develop target-specific epigenetic modifications to reverse gene expression pattern. CRISPR-Cas9 (Clustered Regularly Interspaced Palindrome Repeats-associated protein 9) system-mediated gene activation mechanism paves new methods of target-specific epigenetic therapeutics to cure diseases. In this chapter, we discuss how CRISPR/Cas9 and dCas9 have recently been engineered for epigenome editing. Different strategies have been discussed used for epigenome editing based on their efficacy and complexity. Last but not least we have discussed the limitations, different uses of CRISPR/Cas9 and dCas9 in the area of genetic engineering.
Collapse
Affiliation(s)
- Pranati Sar
- Institute of Science, NIRMA University, Ahmedabad, India.
| | - Sarat Dalai
- Institute of Science, NIRMA University, Ahmedabad, India.
| |
Collapse
|
6
|
Zhang X, Meng T, Cui S, Feng L, Liu D, Pang Q, Wang P. Ubiquitination of Nonhistone Proteins in Cancer Development and Treatment. Front Oncol 2021; 10:621294. [PMID: 33643919 PMCID: PMC7905169 DOI: 10.3389/fonc.2020.621294] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination, a crucial post-translation modification, regulates the localization and stability of the substrate proteins including nonhistone proteins. The ubiquitin-proteasome system (UPS) on nonhistone proteins plays a critical role in many cellular processes such as DNA repair, transcription, signal transduction, and apoptosis. Its dysregulation induces various diseases including cancer, and the identification of this process may provide potential therapeutic targets for cancer treatment. In this review, we summarize the regulatory roles of key UPS members on major nonhistone substrates in cancer-related processes, such as cell cycle, cell proliferation, apoptosis, DNA damage repair, inflammation, and T cell dysfunction in cancer. In addition, we also highlight novel therapeutic interventions targeting the UPS members (E1s, E2s, E3s, proteasomes, and deubiquitinating enzymes). Furthermore, we discuss the application of proteolysis-targeting chimeras (PROTACs) technology as a novel anticancer therapeutic strategy in modulating protein target levels with the aid of UPS.
Collapse
Affiliation(s)
- Xiuzhen Zhang
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Tong Meng
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Shuaishuai Cui
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Ling Feng
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Dongwu Liu
- School of Life Sciences, Shandong University of Technology, Zibo, China
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Qiuxiang Pang
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Ping Wang
- School of Life Sciences, Shandong University of Technology, Zibo, China
| |
Collapse
|
7
|
Wang D, Wang Y, Wu X, Kong X, Li J, Dong C. RNF20 Is Critical for Snail-Mediated E-Cadherin Repression in Human Breast Cancer. Front Oncol 2020; 10:613470. [PMID: 33364200 PMCID: PMC7753216 DOI: 10.3389/fonc.2020.613470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND E-cadherin, a hallmark of epithelial-mesenchymal transition (EMT), is often repressed due to Snail-mediated epigenetic modification; however, the exact mechanism remains unclear. There is an urgent need to understand the determinants of tumor aggressiveness and identify potential therapeutic targets in breast cancer. EXPERIMENTAL DESIGN We studied the association of RNF20 with Snail and G9a by co-immunoprecipitation. We employed quantitative real-time PCR, ChIP, transwell assay, colony formation assay, and mammosphere assay to dissect the molecular events associated with the repression of E-cadherin in human breast cancer. We used a proteogenomic dataset that contains 105 breast tumor samples to determine the clinical relevance of RNF20 by Kaplan-Meier analyses. RESULTS In this study, we identified that Snail interacted with RNF20, an E3 ubiquitin-protein ligase responsible for monoubiquitination of H2BK120, and G9a, a methyltransferase for H3K9me2. RNF20 expression led to the inhibition of E-cadherin expression in the human breast cancer cells. Mechanically, we showed that RNF20 and H3K9m2 were enriched on the promoter of E-cadherin and knockdown of Snail reduced the enrichment of RNF20, showing a Snail-dependent manner. RNF20 expression enhanced breast cancer cell migration, invasion, tumorsphere and colony formation. Clinically, patients with high RNF20 expression had shorter overall survival. CONCLUSION RNF20 expression contributes to EMT induction and breast cancer progression through Snail-mediated epigenetic suppression of E-cadherin expression, suggesting the importance of RNF20 in breast cancer.
Collapse
Affiliation(s)
- Danping Wang
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Wang
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute of Integrative Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xuebiao Wu
- Department of Pathophysiology, Zunyi Medical University, Zunyi, China
| | - Xiangxing Kong
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Li
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenfang Dong
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathophysiology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
8
|
Karami J, Aslani S, Tahmasebi MN, Mousavi MJ, Sharafat Vaziri A, Jamshidi A, Farhadi E, Mahmoudi M. Epigenetics in rheumatoid arthritis; fibroblast-like synoviocytes as an emerging paradigm in the pathogenesis of the disease. Immunol Cell Biol 2020; 98:171-186. [PMID: 31856314 DOI: 10.1111/imcb.12311] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) is characterized by immune dysfunctions and chronic inflammation that mainly affects diarthrodial joints. Genetics has long been surveyed in searching for the etiopathogenesis of the disease and partially clarified the conundrums within this context. Epigenetic alterations, such as DNA methylation, histone modifications, and noncoding RNAs, which have been considered to be involved in RA pathogenesis, likely explain the nongenetic risk factors. Epigenetic modifications may influence RA through fibroblast-like synoviocytes (FLSs). It has been shown that FLSs play an essential role in the onset and exacerbation of RA, and therefore, they may illustrate some aspects of RA pathogenesis. These cells exhibit a unique DNA methylation profile in the early stage of the disease that changes with disease progression. Histone acetylation profile in RA FLSs is disrupted through the imbalance of histone acetyltransferases and histone deacetylase activity. Furthermore, dysregulation of microRNAs (miRNAs) is immense. Most of these miRNAs have shown an aberrant expression in FLSs that are involved in proliferation and cytokine production. Besides, dysregulation of long noncoding RNAs in FLSs has been revealed and attributed to RA pathogenesis. Further investigations are needed to get a better view of epigenetic alterations and their interactions. We also discuss the role of these epigenetic alterations in RA pathogenesis and their therapeutic potential.
Collapse
Affiliation(s)
- Jafar Karami
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Naghi Tahmasebi
- Department of Orthopedics, Division of Knee Surgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Sharafat Vaziri
- Department of Orthopedics, Division of Knee Surgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Czaja AJ. Examining pathogenic concepts of autoimmune hepatitis for cues to future investigations and interventions. World J Gastroenterol 2019; 25:6579-6606. [PMID: 31832000 PMCID: PMC6906207 DOI: 10.3748/wjg.v25.i45.6579] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Multiple pathogenic mechanisms have been implicated in autoimmune hepatitis, but they have not fully explained susceptibility, triggering events, and maintenance or escalation of the disease. Furthermore, they have not identified a critical defect that can be targeted. The goals of this review are to examine the diverse pathogenic mechanisms that have been considered in autoimmune hepatitis, indicate investigational opportunities to validate their contribution, and suggest interventions that might evolve to modify their impact. English abstracts were identified in PubMed by multiple search terms. Full length articles were selected for review, and secondary and tertiary bibliographies were developed. Genetic and epigenetic factors can affect susceptibility by influencing the expression of immune regulatory genes. Thymic dysfunction, possibly related to deficient production of programmed cell death protein-1, can allow autoreactive T cells to escape deletion, and alterations in the intestinal microbiome may help overcome immune tolerance and affect gender bias. Environmental factors may trigger the disease or induce epigenetic changes in gene function. Molecular mimicry, epitope spread, bystander activation, neo-antigen production, lymphocytic polyspecificity, and disturbances in immune inhibitory mechanisms may maintain or escalate the disease. Interventions that modify epigenetic effects on gene expression, alter intestinal dysbiosis, eliminate deleterious environmental factors, and target critical pathogenic mechanisms are therapeutic possibilities that might reduce risk, individualize management, and improve outcome. In conclusion, diverse pathogenic mechanisms have been implicated in autoimmune hepatitis, and they may identify a critical factor or sequence that can be validated and used to direct future management and preventive strategies.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, United States
| |
Collapse
|
10
|
Saravanan K, Kumar H, Chhotaray S, Preethi AL, Talokar AJ, Natarajan A, Parida S, Bhushan B, Panigrahi M. Drosophila melanogaster: a promising model system for epigenetic research. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1685216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- K.A. Saravanan
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Harshit Kumar
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Supriya Chhotaray
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - A. Latha Preethi
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Amol J. Talokar
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - A. Natarajan
- Division of Animal Nutrition, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Bharat Bhushan
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Manjit Panigrahi
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
11
|
Marsh DJ, Dickson KA. Writing Histone Monoubiquitination in Human Malignancy-The Role of RING Finger E3 Ubiquitin Ligases. Genes (Basel) 2019; 10:genes10010067. [PMID: 30669413 PMCID: PMC6356280 DOI: 10.3390/genes10010067] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 01/09/2023] Open
Abstract
There is growing evidence highlighting the importance of monoubiquitination as part of the histone code. Monoubiquitination, the covalent attachment of a single ubiquitin molecule at specific lysines of histone tails, has been associated with transcriptional elongation and the DNA damage response. Sites function as scaffolds or docking platforms for proteins involved in transcription or DNA repair; however, not all sites are equal, with some sites resulting in actively transcribed chromatin and others associated with gene silencing. All events are written by E3 ubiquitin ligases, predominantly of the RING (really interesting new gene) finger type. One of the most well-studied events is monoubiquitination of histone H2B at lysine 120 (H2Bub1), written predominantly by the RING finger complex RNF20-RNF40 and generally associated with active transcription. Monoubiquitination of histone H2A at lysine 119 (H2AK119ub1) is also well-studied, its E3 ubiquitin ligase constituting part of the Polycomb Repressor Complex 1 (PRC1), RING1B-BMI1, associated with transcriptional silencing. Both modifications are activated as part of the DNA damage response. Histone monoubiquitination is a key epigenomic event shaping the chromatin landscape of malignancy and influencing how cells respond to DNA damage. This review discusses a number of these sites and the E3 RING finger ubiquitin ligases that write them.
Collapse
Affiliation(s)
- Deborah J Marsh
- University of Technology Sydney, Translational Oncology Group, School of Life Sciences, Faculty of Science, Ultimo, NSW 2007, Australia.
| | - Kristie-Ann Dickson
- University of Technology Sydney, Translational Oncology Group, School of Life Sciences, Faculty of Science, Ultimo, NSW 2007, Australia.
| |
Collapse
|
12
|
Czaja AJ. Under-Evaluated or Unassessed Pathogenic Pathways in Autoimmune Hepatitis and Implications for Future Management. Dig Dis Sci 2018; 63:1706-1725. [PMID: 29671161 DOI: 10.1007/s10620-018-5072-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
Abstract
Autoimmune hepatitis is a consequence of perturbations in homeostatic mechanisms that maintain self-tolerance but are incompletely understood. The goals of this review are to describe key pathogenic pathways that have been under-evaluated or unassessed in autoimmune hepatitis, describe insights that may shape future therapies, and encourage investigational efforts. The T cell immunoglobulin mucin proteins constitute a family that modulates immune tolerance by limiting the survival of immune effector cells, clearing apoptotic bodies, and expanding the population of granulocytic myeloid-derived suppressor cells. Galectins influence immune cell migration, activation, proliferation, and survival, and T cell exhaustion can be induced and exploited as a possible management strategy. The programmed cell death-1 protein and its ligands comprise an antigen-independent inhibitory axis that can limit the performance of activated T cells by altering their metabolism, and epigenetic changes can silence pro-inflammatory genes or de-repress anti-inflammatory genes that affect disease severity. Changes in the intestinal microbiota and permeability of the intestinal mucosal barrier can be causative or consequential events that affect the occurrence and phenotype of immune-mediated disease, and they may help explain the female propensity for autoimmune hepatitis. Perturbations within these homeostatic mechanisms have been implicated in experimental models and limited clinical experiences, and they have been favorably manipulated by monoclonal antibodies, recombinant molecules, pharmacological agents or dietary supplements. In conclusion, pathogenic mechanisms that have been implicated in other systemic immune-mediated and liver diseases but under-evaluated or unassessed in autoimmune hepatitis warrant consideration and rigorous evaluation.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
13
|
Czaja AJ. Epigenetic changes and their implications in autoimmune hepatitis. Eur J Clin Invest 2018; 48. [PMID: 29383703 DOI: 10.1111/eci.12899] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/25/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND The genetic risk of autoimmune hepatitis is insufficient to explain the observed risk, and epigenetic changes may explain disparities in disease occurrence in different populations within and between countries. The goal of this review was to examine how epigenetic changes induced by the environment or inherited as a phenotypic trait may affect autoimmune hepatitis and be amenable to therapeutic intervention. MATERIALS AND METHODS Pertinent abstracts were identified in PubMed by multiple search terms. The number of abstracts reviewed was 1689, and the number of full-length articles reviewed exceeded 150. RESULTS Activation of pro-inflammatory genes in autoimmune disease is associated with hypomethylation of deoxyribonucleic acid and modification of histones within chromatin. Organ-specific microribonucleic acids can silence genes by marking messenger ribonucleic acids for degradation, and they can promote inflammatory activity or immunosuppression. High circulating levels of the microribonucleic acids 21 and 122 have been demonstrated in autoimmune hepatitis, and they may increase production of pro-inflammatory cytokines. Microribonucleic acids are also essential for maintaining regulatory T cells. Drugs, pollutants, infections, diet and ageing can induce inheritable epigenetic changes favouring autoimmunity. Reversal is feasible by manipulating enzymes, transcription factors, gene-silencing molecules and toxic exposures or by administering methyl donors and correcting vitamin D deficiency. Gene targets, site specificity, efficacy and consequences are uncertain. CONCLUSIONS Potentially reversible epigenetic changes may affect the occurrence and outcome of autoimmune hepatitis, and investigations are warranted to determine the nature of these changes, key genomic targets, and feasible interventions and their consequences.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
14
|
Czaja AJ. Review article: next-generation transformative advances in the pathogenesis and management of autoimmune hepatitis. Aliment Pharmacol Ther 2017; 46:920-937. [PMID: 28901565 DOI: 10.1111/apt.14324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/01/2017] [Accepted: 08/25/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Advances in autoimmune hepatitis that transform current concepts of pathogenesis and management can be anticipated as products of ongoing investigations driven by unmet clinical needs and an evolving biotechnology. AIM To describe the advances that are likely to become transformative in autoimmune hepatitis, based on the direction of current investigations. METHODS Pertinent abstracts were identified in PubMed by multiple search terms. Full-length articles were selected for review, and a secondary bibliography was developed. The discovery process was repeated, and a tertiary bibliography was identified. The number of abstracts reviewed was 2830, and the number of full-length articles reviewed exceeded 150. RESULTS Risk-laden allelic variants outside the major histocompatibility complex (rs3184504, r36000782) are being identified by genome-wide association studies, and their gene products are potential therapeutic targets. Epigenetic changes associated with environmental cues can enhance the transcriptional activity of genes, and chromatin re-structuring and antagonists of noncoding molecules of ribonucleic acid are feasible interventions. The intestinal microbiome is a discovery field for microbial products and activated immune cells that may translocate to the periphery and respond to manipulation. Epidemiological studies and controlled interview-based surveys may implicate environmental and xenobiotic factors that warrant evidence-based changes in lifestyle, and site-directed molecular and cellular interventions promise to change the paradigm of treatment from one of blanket immunosuppression. CONCLUSIONS Advances in genetics, epigenetics, pathophysiology, epidemiology, and site-directed molecular and cellular interventions constitute the next generation of transformative advances in autoimmune hepatitis.
Collapse
Affiliation(s)
- A J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
15
|
Xia Y, Yang W, Fa M, Li X, Wang Y, Jiang Y, Zheng Y, Lee JH, Li J, Lu Z. RNF8 mediates histone H3 ubiquitylation and promotes glycolysis and tumorigenesis. J Exp Med 2017; 214:1843-1855. [PMID: 28507061 PMCID: PMC5461008 DOI: 10.1084/jem.20170015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 01/18/2023] Open
Abstract
Xia et al. show that EGF receptor activation results in the binding of the RNF8 forkhead-associated domain to pyruvate kinase M2-phosphorylated histone H3-T11, leading to histone H3 polyubiquitylation and degradation and subsequent gene expression for tumor cell glycolysis and proliferation. Disassembly of nucleosomes in which genomic DNA is packaged with histone regulates gene expression. However, the mechanisms underlying nucleosome disassembly for gene expression remain elusive. We show here that epidermal growth factor receptor activation results in the binding of the RNF8 forkhead-associated domain to pyruvate kinase M2–phosphorylated histone H3-T11, leading to K48-linked polyubiquitylation of histone H3 at K4 and subsequent proteasome-dependent protein degradation. In addition, H3 polyubiquitylation induces histone dissociation from chromatin, nucleosome disassembly, and binding of RNA polymerase II to MYC and CCND1 promoter regions for transcription. RNF8-mediated histone H3 polyubiquitylation promotes tumor cell glycolysis and proliferation and brain tumorigenesis. Our findings uncover the role of RNF8-mediated histone H3 polyubiquitylation in the regulation of histone H3 stability and chromatin modification, paving the way to gene expression regulation and tumorigenesis.
Collapse
Affiliation(s)
- Yan Xia
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Weiwei Yang
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Fa
- Genetivision Corporation, Houston, TX 77054
| | - Xinjian Li
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Yugang Wang
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Yuhui Jiang
- The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Cancer, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Yanhua Zheng
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jong-Ho Lee
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jing Li
- Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs of Minister of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 .,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030.,The Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030
| |
Collapse
|
16
|
Bowerman S, Wereszczynski J. Effects of MacroH2A and H2A.Z on Nucleosome Dynamics as Elucidated by Molecular Dynamics Simulations. Biophys J 2016; 110:327-337. [PMID: 26789756 DOI: 10.1016/j.bpj.2015.12.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022] Open
Abstract
Eukaryotes tune the transcriptional activity of their genome by altering the nucleosome core particle through multiple chemical processes. In particular, replacement of the canonical H2A histone with the variants macroH2A and H2A.Z has been shown to affect DNA accessibility and nucleosome stability; however, the processes by which this occurs remain poorly understood. In this study, we elucidate the molecular mechanisms of these variants with an extensive molecular dynamics study of the canonical nucleosome along with three variant-containing structures: H2A.Z, macroH2A, and an H2A mutant with macroH2A-like L1 loops. Simulation results show that variant L1 loops play a pivotal role in stabilizing DNA binding to the octamer through direct interactions, core structural rearrangements, and altered allosteric networks in the nucleosome. All variants influence dynamics; however, macroH2A-like systems have the largest effect on energetics. In addition, we provide a comprehensive analysis of allosteric networks in the nucleosome and demonstrate that variants take advantage of stronger interactions between L1 loops to propagate dynamics throughout the complex. Furthermore, we show that posttranslational modifications are enriched at key locations in these networks. Taken together, these results provide, to our knowledge, new insights into the relationship between the structure, dynamics, and function of the nucleosome core particle and chromatin fibers, and how they are influenced by chromatin remodeling factors.
Collapse
Affiliation(s)
- Samuel Bowerman
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois
| | - Jeff Wereszczynski
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois.
| |
Collapse
|
17
|
Burette AC, Judson MC, Burette S, Phend KD, Philpot BD, Weinberg RJ. Subcellular organization of UBE3A in neurons. J Comp Neurol 2016; 525:233-251. [PMID: 27339004 DOI: 10.1002/cne.24063] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/13/2016] [Accepted: 06/17/2016] [Indexed: 01/01/2023]
Abstract
Ubiquitination regulates a broad array of cellular processes, and defective ubiquitination is implicated in several neurological disorders. Loss of the E3 ubiquitin-protein ligase UBE3A causes Angelman syndrome. Despite its clinical importance, the normal role of UBE3A in neurons is still unclear. As a step toward deciphering its possible functions, we performed high-resolution light and electron microscopic immunocytochemistry. We report a broad distribution of UBE3A in neurons, highlighted by concentrations in axon terminals and euchromatin-rich nuclear domains. Our findings suggest that UBE3A may act locally to regulate individual synapses while also mediating global, neuronwide influences through the regulation of gene transcription. J. Comp. Neurol. 525:233-251, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alain C Burette
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Matthew C Judson
- Department of Cell Biology and Physiology, Neuroscience Center, and Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Susan Burette
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Kristen D Phend
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Benjamin D Philpot
- Department of Cell Biology and Physiology, Neurobiology Curriculum, Neuroscience Center, and Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Richard J Weinberg
- Department of Cell Biology and Physiology and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, 27599
| |
Collapse
|
18
|
Abstract
In multicellular organisms differentiated cells must maintain their cellular memory, which will be faithfully inherited and maintained by their progeny. In addition, these specialized cells are exposed to specific environmental and cell-intrinsic signals and will have to appropriately respond to them. Some of these stimuli lead to changes in a subset of genes or to a genome-wide reprogramming of the cells that will remain after stimuli removal and, in some instances, will be inherited by the daughter cells. The molecular substrate that integrates cellular memory and plasticity is the chromatin, a complex of DNA and histones unique to eukaryotes. The nucleosome is the fundamental unit of the chromatin and nucleosomal organization defines different chromatin conformations. Chromatin regulators affect chromatin conformation and accessibility by covalently modifying the DNA or the histones, substituting histone variants, remodeling the nucleosome position or modulating chromatin looping and folding. These regulators frequently act in multiprotein complexes and highly specific interplays among chromatin marks and different chromatin regulators allow a remarkable array of possibilities. Therefore, chromatin regulator nets act to propagate the conformation of different chromatin regions through DNA replication and mitosis, and to remodel the chromatin fiber to regulate the accessibility of the DNA to transcription factors and to the transcription and repair machineries. Here, the state-of-the-art of the best-known chromatin regulators is reviewed.
Collapse
|
19
|
Abstract
Ubiquitination has traditionally been viewed in the context of polyubiquitination that is essential for marking proteins for degradation via the proteasome. Recent discoveries have shed light on key cellular roles for monoubiquitination, including as a post-translational modification (PTM) of histones such as histone H2B. Monoubiquitination plays a significant role as one of the largest histone PTMs, alongside smaller, better-studied modifications such as methylation, acetylation and phosphorylation. Monoubiquitination of histone H2B at lysine 120 (H2Bub1) has been shown to have key roles in transcription, the DNA damage response and stem cell differentiation. The H2Bub1 enzymatic cascade involves E3 RING finger ubiquitin ligases, with the main E3 generally accepted to be the RNF20-RNF40 complex, and deubiquitinases including ubiquitin-specific protease 7 (USP7), USP22 and USP44. H2Bub1 has been shown to physically disrupt chromatin strands, fostering a more open chromatin structure accessible to transcription factors and DNA repair proteins. It also acts as a recruiting signal, actively attracting proteins with roles in transcription and DNA damage. H2Bub1 also appears to play central roles in histone cross-talk, influencing methylation events on histone H3, including H3K4 and H3K79. Most significantly, global levels of H2Bub1 are low to absent in advanced cancers including breast, colorectal, lung and parathyroid, marking H2Bub1 and the enzymes that regulate it as key molecules of interest as possible new therapeutic targets for the treatment of cancer. This review offers an overview of current knowledge regarding H2Bub1 and highlights links between dysregulation of H2Bub1-associated enzymes, stem cells and malignancy.
Collapse
Affiliation(s)
- Alexander J Cole
- Hormones and Cancer GroupKolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales 2065, Australia
| | - Roderick Clifton-Bligh
- Hormones and Cancer GroupKolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales 2065, Australia
| | - Deborah J Marsh
- Hormones and Cancer GroupKolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales 2065, Australia
| |
Collapse
|
20
|
Ouni I, Flick K, Kaiser P. Ubiquitin and transcription: The SCF/Met4 pathway, a (protein-) complex issue. Transcription 2014; 2:135-139. [PMID: 21826284 DOI: 10.4161/trns.2.3.15903] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 04/20/2011] [Accepted: 04/20/2011] [Indexed: 02/06/2023] Open
Abstract
Ubiquitylation has emerged as an omnipresent factor at all levels of transcriptional regulation. A recent study that describes the yeast transcriptional activator Met4 as a functional component of the very same ubiquitin ligase that regulates its own activity highlights the close relation between transcription and the ubiquitin proteasome system.
Collapse
Affiliation(s)
- Ikram Ouni
- Department of Biological Chemistry; School of Medicine; University of California Irvine; Irvine, CA USA
| | | | | |
Collapse
|
21
|
Hu B, Li S, Zhang X, Zheng X. HSCARG, a novel regulator of H2A ubiquitination by downregulating PRC1 ubiquitin E3 ligase activity, is essential for cell proliferation. Nucleic Acids Res 2014; 42:5582-93. [PMID: 24711370 PMCID: PMC4027218 DOI: 10.1093/nar/gku230] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Histone H2A ubiquitination plays critical roles in transcriptional repression and deoxyribonucleic acid (DNA) damage response. More attention has been focused on ubiquitin E3 ligases of H2A, however, less is known about the negative regulators of H2A ubiquitination. Here we identified HSCARG as a new negative regulatory protein for H2A ubiquitination and found a possible link between regulator of H2A ubiquitination and cell cycle. Mechanistically, HSCARG interacts with polycomb repressive complex 1 (PRC1) and deubiquitinase USP7 and inhibits PRC1 ubiquitination in a USP7-dependent manner. As ubiquitination of PRC1 is critical for its E3 ligase activity toward H2A, HSCARG and USP7 are further shown to decrease the level of H2A ubiquitination. Moreover, we demonstrated that HSCARG is involved in DNA damage response through affecting the level of H2A ubiquitination and localization of RAP80 at lesion points. Knockout of HSCARG results in persistent activation of checkpoint signaling and leads to cell cycle arrest. This study unravels a novel mechanism for the regulation of H2A ubiquitination and elucidates how regulators of H2A ubiquitination affect cell cycle.
Collapse
Affiliation(s)
- Bin Hu
- State Key Lab of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Shangze Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaodong Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaofeng Zheng
- State Key Lab of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
22
|
The ATM-mediated DNA-damage response. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
23
|
Cecere G, Hoersch S, Jensen MB, Dixit S, Grishok A. The ZFP-1(AF10)/DOT-1 complex opposes H2B ubiquitination to reduce Pol II transcription. Mol Cell 2013; 50:894-907. [PMID: 23806335 DOI: 10.1016/j.molcel.2013.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 03/04/2013] [Accepted: 05/21/2013] [Indexed: 12/20/2022]
Abstract
The inhibition of transcriptional elongation plays an important role in gene regulation in metazoans, including C. elegans. Here, we combine genomic and biochemical approaches to dissect a role of ZFP-1, the C. elegans AF10 homolog, in transcriptional control. We show that ZFP-1 and its interacting partner DOT-1.1 have a global role in negatively modulating the level of polymerase II (Pol II) transcription on essential widely expressed genes. Moreover, the ZFP-1/DOT-1.1 complex contributes to progressive Pol II pausing on essential genes during development and to rapid Pol II pausing during stress response. The slowing down of Pol II transcription by ZFP-1/DOT-1.1 is associated with an increase in H3K79 methylation and a decrease in H2B monoubiquitination, which promotes transcription. We propose a model wherein the recruitment of ZFP-1/DOT-1.1 and deposition of H3K79 methylation at highly expressed genes initiates a negative feedback mechanism for the modulation of their expression.
Collapse
Affiliation(s)
- Germano Cecere
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
24
|
Shema-Yaacoby E, Nikolov M, Haj-Yahya M, Siman P, Allemand E, Yamaguchi Y, Muchardt C, Urlaub H, Brik A, Oren M, Fischle W. Systematic identification of proteins binding to chromatin-embedded ubiquitylated H2B reveals recruitment of SWI/SNF to regulate transcription. Cell Rep 2013; 4:601-8. [PMID: 23933260 DOI: 10.1016/j.celrep.2013.07.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 05/28/2013] [Accepted: 07/09/2013] [Indexed: 11/26/2022] Open
Abstract
Chromatin posttranslational modifications (PTMs), including monoubiquitylation of histone H2B on lysine 120 (H2Bub1), play a major role in regulating genome functions. To elucidate the molecular mechanisms of H2Bub1 activity, a chromatin template uniformly containing H2Bub1 was used as an affinity matrix to identify preferentially interacting human proteins. Over 90 such factors were found, including proteins and protein complexes associated with transcription, RNA posttranscriptional modifications, and DNA replication and repair. Notably, we found that the SWI/SNF chromatin remodeling complex associates preferentially with H2Bub1-rich chromatin. Moreover, SWI/SNF is required for optimal transcription of a subset of genes that are selectively dependent on H2Bub1. Our findings substantially expand the known H2Bub1 interactome and provide insights into the functions of this PTM in mammalian gene regulation.
Collapse
Affiliation(s)
- Efrat Shema-Yaacoby
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jeronimo C, Bataille AR, Robert F. The Writers, Readers, and Functions of the RNA Polymerase II C-Terminal Domain Code. Chem Rev 2013; 113:8491-522. [DOI: 10.1021/cr4001397] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - Alain R. Bataille
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
- Département
de Médecine,
Faculté de Médecine, Université de Montréal, Montréal, Québec,
Canada H3T 1J4
| |
Collapse
|
26
|
Niño CA, Chaparro J, Soffientini P, Polo S, Wasserman M. Ubiquitination dynamics in the early-branching eukaryote Giardia intestinalis. Microbiologyopen 2013; 2:525-39. [PMID: 23613346 PMCID: PMC3684764 DOI: 10.1002/mbo3.88] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 01/06/2023] Open
Abstract
Ubiquitination is a highly dynamic and versatile posttranslational modification that regulates protein function, stability, and interactions. To investigate the roles of ubiquitination in a primitive eukaryotic lineage, we utilized the early-branching eukaryote Giardia intestinalis. Using a combination of biochemical, immunofluorescence-based, and proteomics approaches, we assessed the ubiquitination status during the process of differentiation in Giardia. We observed that different types of ubiquitin modifications present specific cellular and temporal distribution throughout the Giardia life cycle from trophozoites to cyst maturation. Ubiquitin signal was detected in the wall of mature cysts, and enzymes implicated in cyst wall biogenesis were identified as substrates for ubiquitination. Interestingly, inhibition of proteasome activity did not affect trophozoite replication and differentiation, while it caused a decrease in cyst viability, arguing for proteasome involvement in cyst wall maturation. Using a proteomics approach, we identified around 200 high-confidence ubiquitinated candidates that vary their ubiquitination status during differentiation. Our results indicate that ubiquitination is critical for several cellular processes in this primitive eukaryote.
Collapse
Affiliation(s)
- Carlos A Niño
- Laboratorio de Investigaciones Básicas en Bioquímica - LIBBIQ, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | | | | |
Collapse
|
27
|
Trujillo KM, Osley MA. A role for H2B ubiquitylation in DNA replication. Mol Cell 2012; 48:734-46. [PMID: 23103252 PMCID: PMC3525772 DOI: 10.1016/j.molcel.2012.09.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 06/12/2012] [Accepted: 09/12/2012] [Indexed: 02/06/2023]
Abstract
The monoubiquitylation of histone H2B plays an important role in gene expression by contributing to the regulation of transcription elongation and mRNA processing and export. We explored additional cellular functions of this histone modification by investigating its localization to intergenic regions. H2B ubiquitylation is present in chromatin around origins of DNA replication in budding yeast, and as DNA is replicated its levels are maintained on daughter strands by the Bre1 ubiquitin ligase. In the absence of H2B ubiquitylation, the prereplication complex is formed and activated, but replication fork progression is slowed down and the replisome becomes unstable in the presence of hydroxyurea. H2B ubiquitylation promotes the assembly or stability of nucleosomes on newly replicated DNA, and this function is postulated to contribute to fork progression and replisome stability.
Collapse
Affiliation(s)
- Kelly M Trujillo
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | |
Collapse
|
28
|
Folci M, Meda F, Gershwin ME, Selmi C. Cutting-edge issues in primary biliary cirrhosis. Clin Rev Allergy Immunol 2012; 42:342-54. [PMID: 21243445 DOI: 10.1007/s12016-011-8253-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several crucial issues remain open in our understanding of primary biliary cirrhosis (PBC), an autoimmune liver disease targeting the small- and medium-sized intrahepatic bile ducts. These issues include the high tissue specificity of the autoimmune injury despite the nontraditional autoantigens found in all mitochondria recognized by PBC-associated autoantibodies, the causes of the commonly observed pruritus, and the disease etiology per se. In all these fields, there has been recent interest secondary to the use of large-scale efforts (such as genome-wide association studies) that were previously considered poorly feasible in a rare disease such as PBC as well as other intuitions. Accordingly, there are now fascinating theories to explain the onset and severity of pruritus due to elevated autotaxin levels, the peculiar apoptotic features of bile duct cells to explain the tissue specificity, and genomic and epigenetic associations contributing to disease susceptibility. We have arbitrarily chosen these four aspects as the most promising in the PBC recent literature and will provide herein a discussion of the recent data and their potential implications.
Collapse
Affiliation(s)
- Marco Folci
- Division of Internal Medicine, IRCCS Istituto Clinico Humanitas, via A. Manzoni 56, Rozzano, 20089, Milan, Italy
| | | | | | | |
Collapse
|
29
|
Schneider S, Chen H, Tang J, Emkey R, Andrews PS. Development of a homogeneous AlphaLISA ubiquitination assay using ubiquitin binding matrices as universal components for the detection of ubiquitinated proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2038-45. [PMID: 22504171 DOI: 10.1016/j.bbamcr.2012.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/16/2012] [Accepted: 03/28/2012] [Indexed: 12/23/2022]
Abstract
The Ubiquitin Proteasome Pathway (UPP) has become a target rich pathway for therapeutic intervention as its role in pathogenic disease is better understood. In particular many E3 ligases within this pathway have been implicated in cancer, inflammation and metabolic diseases. It has been of great interest to develop biochemical assays to identify inhibitors of catalytic E3 ubiquitination activity as a means of abrogating the disease mechanism. Here we describe a homogeneous biochemical assay that utilizes native ubiquitin and Tandem-repeated Ubiquitin-Binding Entities (TUBEs) as a detection technology for ubiquitination activity. We developed a TUBEs based proximity AlphaLisa® assay for Mdm2, which is an E3 ligase that negatively regulates p53 tumor suppressor protein. We further demonstrate that this assay strategy or design can also be applied to the development of assays to detect autoubiquitination of other E3 ligases that are also of interest for therapeutic intervention. This article is part of a Special Issue entitled: Ubiquitin Drug Discovery and Diagnostics.
Collapse
|
30
|
Martin TA, Jayanthi S, McCoy MT, Brannock C, Ladenheim B, Garrett T, Lehrmann E, Becker KG, Cadet JL. Methamphetamine causes differential alterations in gene expression and patterns of histone acetylation/hypoacetylation in the rat nucleus accumbens. PLoS One 2012; 7:e34236. [PMID: 22470541 PMCID: PMC3314616 DOI: 10.1371/journal.pone.0034236] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/24/2012] [Indexed: 02/03/2023] Open
Abstract
Methamphetamine (METH) addiction is associated with several neuropsychiatric symptoms. Little is known about the effects of METH on gene expression and epigenetic modifications in the rat nucleus accumbens (NAC). Our study investigated the effects of a non-toxic METH injection (20 mg/kg) on gene expression, histone acetylation, and the expression of the histone acetyltransferase (HAT), ATF2, and of the histone deacetylases (HDACs), HDAC1 and HDAC2, in that structure. Microarray analyses done at 1, 8, 16 and 24 hrs after the METH injection identified METH-induced changes in the expression of genes previously implicated in the acute and longterm effects of psychostimulants, including immediate early genes and corticotropin-releasing factor (Crf). In contrast, the METH injection caused time-dependent decreases in the expression of other genes including Npas4 and cholecystokinin (Cck). Pathway analyses showed that genes with altered expression participated in behavioral performance, cell-to-cell signaling, and regulation of gene expression. PCR analyses confirmed the changes in the expression of c-fos, fosB, Crf, Cck, and Npas4 transcripts. To determine if the METH injection caused post-translational changes in histone markers, we used western blot analyses and identified METH-mediated decreases in histone H3 acetylated at lysine 9 (H3K9ac) and lysine 18 (H3K18ac) in nuclear sub-fractions. In contrast, the METH injection caused time-dependent increases in acetylated H4K5 and H4K8. The changes in histone acetylation were accompanied by decreased expression of HDAC1 but increased expression of HDAC2 protein levels. The histone acetyltransferase, ATF2, showed significant METH-induced increased in protein expression. These results suggest that METH-induced alterations in global gene expression seen in rat NAC might be related, in part, to METH-induced changes in histone acetylation secondary to changes in HAT and HDAC expression. The causal role that HATs and HDACs might play in METH-induced gene expression needs to be investigated further.
Collapse
Affiliation(s)
- Tracey A. Martin
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, Maryland, United States of America
| | - Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, Maryland, United States of America
| | - Michael T. McCoy
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, Maryland, United States of America
| | - Christie Brannock
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, Maryland, United States of America
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, Maryland, United States of America
| | - Tiffany Garrett
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, Maryland, United States of America
| | - Elin Lehrmann
- Gene Expression and Genomics Unit, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Kevin G. Becker
- Gene Expression and Genomics Unit, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, Maryland, United States of America
| |
Collapse
|
31
|
Yao T, Ndoja A. Regulation of gene expression by the ubiquitin-proteasome system. Semin Cell Dev Biol 2012; 23:523-9. [PMID: 22430757 DOI: 10.1016/j.semcdb.2012.02.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/06/2012] [Accepted: 02/10/2012] [Indexed: 12/26/2022]
Abstract
Transcription is the foremost regulatory point during the process of producing a functional protein. Not only specific genes need to be turned on and off according to growth and environmental conditions, the amounts and quality of transcripts produced are fine-tuned to offer optimal responses. As a result, numerous regulatory mechanisms converge to provide temporal and spatial specificity for this process. In the past decade, the ubiquitin-proteasome system (UPS), which is best known as a pathway for intracellular proteolysis, has emerged as another pivotal player in the control of gene expression. There is increasing evidence that the UPS has both proteolytic and non-proteolytic functions in multiple aspects of the transcription process, including initiation, elongation, mRNA processing as well as chromatin dynamics. In this review, we introduce the many interfaces between the UPS and transcription with focuses on the mechanistic understanding of UPS function in each process.
Collapse
Affiliation(s)
- Tingting Yao
- Colorado State University, Biochemistry and Molecular Biology, 1870 Campus Delivery, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
32
|
Chernikova SB, Razorenova OV, Higgins JP, Sishc BJ, Nicolau M, Dorth JA, Chernikova DA, Kwok S, Brooks JD, Bailey SM, Game JC, Brown JM. Deficiency in mammalian histone H2B ubiquitin ligase Bre1 (Rnf20/Rnf40) leads to replication stress and chromosomal instability. Cancer Res 2012; 72:2111-9. [PMID: 22354749 DOI: 10.1158/0008-5472.can-11-2209] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mammalian Bre1 complexes (BRE1A/B (RNF20/40) in humans and Bre1a/b (Rnf20/40) in mice) function similarly to their yeast homolog Bre1 as ubiquitin ligases in monoubiquitination of histone H2B. This ubiquitination facilitates methylation of histone H3 at K4 and K79, and accounts for the roles of Bre1 and its homologs in transcriptional regulation. Recent studies by others suggested that Bre1 acts as a tumor suppressor, augmenting expression of select tumor suppressor genes and suppressing select oncogenes. In this study, we present an additional mechanism of tumor suppression by Bre1 through maintenance of genomic stability. We track the evolution of genomic instability in Bre1-deficient cells from replication-associated double-strand breaks (DSB) to specific genomic rearrangements that explain a rapid increase in DNA content and trigger breakage-fusion-bridge cycles. We show that aberrant RNA-DNA structures (R-loops) constitute a significant source of DSBs in Bre1-deficient cells. Combined with a previously reported defect in homologous recombination, generation of R-loops is a likely initiator of replication stress and genomic instability in Bre1-deficient cells. We propose that genomic instability triggered by Bre1 deficiency may be an important early step that precedes acquisition of an invasive phenotype, as we find decreased levels of BRE1A/B and dimethylated H3K79 in testicular seminoma and in the premalignant lesion in situ carcinoma.
Collapse
Affiliation(s)
- Sophia B Chernikova
- Department of Radiation Oncology, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dennissen FJA, Kholod N, van Leeuwen FW. The ubiquitin proteasome system in neurodegenerative diseases: culprit, accomplice or victim? Prog Neurobiol 2012; 96:190-207. [PMID: 22270043 DOI: 10.1016/j.pneurobio.2012.01.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/18/2011] [Accepted: 01/05/2012] [Indexed: 12/14/2022]
Abstract
A shared hallmark for many neurodegenerative disorders is the accumulation of toxic protein species which is assumed to be the cause for these diseases. Since the ubiquitin proteasome system (UPS) is the most important pathway for selective protein degradation it is likely that it is involved in the aetiology neurodegenerative disorders. Indeed, impairment of the UPS has been reported to occur during neurodegeneration. Although accumulation of toxic protein species (amyloid β) are in turn known to impair the UPS the relationship is not necessarily causal. We provide an overview of the most recent insights in the roles the UPS plays in protein degradation and other processes. Additionally, we discuss the role of the UPS in clearance of the toxic proteins known to accumulate in the hallmarks of neurodegenerative diseases. The present paper will focus on critically reviewing the involvement of the UPS in specific neurodegenerative diseases and will discuss if UPS impairment is a cause, a consequence or both of the disease.
Collapse
Affiliation(s)
- F J A Dennissen
- Department of Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | |
Collapse
|
34
|
RNF20 inhibits TFIIS-facilitated transcriptional elongation to suppress pro-oncogenic gene expression. Mol Cell 2011; 42:477-88. [PMID: 21596312 DOI: 10.1016/j.molcel.2011.03.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/27/2011] [Accepted: 03/14/2011] [Indexed: 12/31/2022]
Abstract
hBRE1/RNF20 is the major E3 ubiquitin ligase for histone H2B. RNF20 depletion causes a global reduction of monoubiquitylated H2B (H2Bub) levels and augments the expression of growth-promoting, pro-oncogenic genes. Those genes reside preferentially in compact chromatin and are inefficiently transcribed under basal conditions. We now report that RNF20, presumably via H2Bub, selectively represses those genes by interfering with chromatin recruitment of TFIIS, a factor capable of relieving stalled RNA polymerase II. RNF20 inhibits the interaction between TFIIS and the PAF1 complex and hinders transcriptional elongation. TFIIS ablation selectively abolishes the upregulation of those genes upon RNF20 depletion and attenuates the cellular response to EGF. Consistent with its positive role in transcription of pro-oncogenic genes, TFIIS expression is elevated in various human tumors. Our findings provide a molecular mechanism for selective gene repression by RNF20 and position TFIIS as a key target of RNF20's tumor suppressor activity.
Collapse
|
35
|
Conservation and divergence of the histone H2B monoubiquitination pathway from yeast to humans and plants. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11515-011-1000-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Meland S, Farmen E, Heier LS, Rosseland BO, Salbu B, Song Y, Tollefsen KE. Hepatic gene expression profile in brown trout (Salmo trutta) exposed to traffic related contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:1430-1443. [PMID: 21295820 DOI: 10.1016/j.scitotenv.2011.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 01/05/2011] [Accepted: 01/06/2011] [Indexed: 05/30/2023]
Abstract
In recent decades there has been growing concern about highway runoff as a potential threat and a significant source of diffuse pollution to the aquatic environment. However, identifying ecotoxicological effects might be challenging, especially at sites where the traffic density is modest to low. Hence, there is a need for alternatives e.g. small-scale toxicity tests using conventional endpoints such as mortality and growth. The present paper presents result from a transcriptional (microarray) screening performed on liver from brown trout (Salmo trutta) acutely exposed (4h) to traffic-related contaminants during washing of a highway tunnel outside the city of Oslo, Norway. The results demonstrated that traffic-related contaminants caused a plethora of molecular changes that persisted several hours after the exposure (i.e. during recovery). Beside an evident transcriptional up-regulation of e.g. cytochrome P450 1A1 (CYP1A1), cytochrome P450 1B1 (CYP1B1), and cytosolic sulfotransferase (SULT) involved in xenobiotic biotransformation, the observed responses were predominantly associated with immunosuppression, oxidative damage, and endocrine modulation. The observed responses were likely caused by an interaction of several contaminants including trace metals and organic micro-pollutants such as PAHs.
Collapse
Affiliation(s)
- Sondre Meland
- Norwegian University of Life Sciences (UMB), Department of Plant and Environmental Sciences, P.O. Box 5003, N-1432 Ås, Norway.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The etiology of autoimmune diseases remains largely unknown. Concordance rates in monozygotic twins are lower than 50% while genome-wide association studies propose numerous significant associations representing only a minority of patients. These lines of evidence strongly support other complementary mechanisms involved in the regulation of genes expression ultimately causing overt autoimmunity. Alterations in the post-translational modification of histones and DNA methylation are the two major epigenetic mechanisms that may potentially cause a breakdown of immune tolerance and the perpetuation of autoimmune diseases. In recent years, several studies both in clinical settings and experimental models proposed that the epigenome may hold the key to a better understanding of autoimmunity initiation and perpetuation. More specifically, data support the impact of epigenetic changes in systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis and other autoimmune diseases, in some cases based on mechanistical observations. We herein discuss what we currently know and what we expect will come in the next future. Ultimately, epigenetic treatments already being used in oncology may soon prove beneficial also in autoimmune diseases.
Collapse
Affiliation(s)
- Francesca Meda
- Department of Medicine and Hepatobiliary Immunopathology Unit, IRCCS Istituto Clinico Humanitas, Rozzano, Milan, Italy
| | | | | | | |
Collapse
|
38
|
Filenko NA, Kolar C, West JT, Smith SA, Hassan YI, Borgstahl GEO, Zempleni J, Lyubchenko YL. The role of histone H4 biotinylation in the structure of nucleosomes. PLoS One 2011; 6:e16299. [PMID: 21298003 PMCID: PMC3029316 DOI: 10.1371/journal.pone.0016299] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 12/15/2010] [Indexed: 11/18/2022] Open
Abstract
Background Post-translational modifications of histones play important roles in regulating nucleosome structure and gene transcription. It has been shown that biotinylation of histone H4 at lysine-12 in histone H4 (K12Bio-H4) is associated with repression of a number of genes. We hypothesized that biotinylation modifies the physical structure of nucleosomes, and that biotin-induced conformational changes contribute to gene silencing associated with histone biotinylation. Methodology/Principal Findings To test this hypothesis we used atomic force microscopy to directly analyze structures of nucleosomes formed with biotin-modified and non-modified H4. The analysis of the AFM images revealed a 13% increase in the length of DNA wrapped around the histone core in nucleosomes with biotinylated H4. This statistically significant (p<0.001) difference between native and biotinylated nucleosomes corresponds to adding approximately 20 bp to the classical 147 bp length of nucleosomal DNA. Conclusions/Significance The increase in nucleosomal DNA length is predicted to stabilize the association of DNA with histones and therefore to prevent nucleosomes from unwrapping. This provides a mechanistic explanation for the gene silencing associated with K12Bio-H4. The proposed single-molecule AFM approach will be instrumental for studying the effects of various epigenetic modifications of nucleosomes, in addition to biotinylation.
Collapse
Affiliation(s)
- Nina A. Filenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Carol Kolar
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - John T. West
- The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - S. Abbie Smith
- The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Yousef I. Hassan
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Gloria E. O. Borgstahl
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
39
|
Anindya R, Mari PO, Kristensen U, Kool H, Giglia-Mari G, Mullenders LH, Fousteri M, Vermeulen W, Egly JM, Svejstrup JQ. A ubiquitin-binding domain in Cockayne syndrome B required for transcription-coupled nucleotide excision repair. Mol Cell 2010; 38:637-48. [PMID: 20541997 PMCID: PMC2885502 DOI: 10.1016/j.molcel.2010.04.017] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/24/2010] [Accepted: 04/16/2010] [Indexed: 12/31/2022]
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) allows RNA polymerase II (RNAPII)-blocking lesions to be rapidly removed from the transcribed strand of active genes. Defective TCR in humans is associated with Cockayne syndrome (CS), typically caused by defects in either CSA or CSB. Here, we show that CSB contains a ubiquitin-binding domain (UBD). Cells expressing UBD-less CSB (CSB(del)) have phenotypes similar to those of cells lacking CSB, but these can be suppressed by appending a heterologous UBD, so ubiquitin binding is essential for CSB function. Surprisingly, CSB(del) remains capable of assembling nucleotide excision repair factors and repair synthesis proteins around damage-stalled RNAPII, but such repair complexes fail to excise the lesion. Together, our results indicate an essential role for protein ubiquitylation and CSB's UBD in triggering damage incision during TC-NER and allow us to integrate the function of CSA and CSB in a model for the process.
Collapse
Affiliation(s)
- Roy Anindya
- Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms EN6 3LD, UK
| | - Pierre-Olivier Mari
- Department of Cell Biology and Genetics, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Ulrik Kristensen
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 16367404 Illkirch Cedex, CU Strasbourg, France
| | - Hanneke Kool
- Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Giuseppina Giglia-Mari
- Department of Cell Biology and Genetics, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Leon H. Mullenders
- Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Maria Fousteri
- Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Wim Vermeulen
- Department of Cell Biology and Genetics, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Jean-Marc Egly
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 16367404 Illkirch Cedex, CU Strasbourg, France
| | - Jesper Q. Svejstrup
- Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms EN6 3LD, UK
| |
Collapse
|
40
|
Histone H2B C-terminal helix mediates trans-histone H3K4 methylation independent of H2B ubiquitination. Mol Cell Biol 2010; 30:3216-32. [PMID: 20439497 DOI: 10.1128/mcb.01008-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The trans-histone regulatory cross talk between H2BK123 ubiquitination (H2Bub1) and H3K4 and H3K79 methylation is not fully understood. In this study, we report that the residues arginine 119 and threonine 122 in the H2B C-terminal helix are important for transcription and cell growth and play a direct role in controlling H2Bub1 and H3K4 methylation. These residues modulate H2Bub1 levels by controlling the chromatin binding and activities of the deubiquitinases. Furthermore, we find an uncoupling of the H2Bub1-mediated coregulation of both H3K4 and -K79 methylation, as these H2B C-terminal helix residues are part of a distinct surface that affects only Set1-COMPASS (complex proteins associated with Set1)-mediated H3K4 methylation without affecting the functions of Dot1. Importantly, we also find that these residues interact with Spp1 and control the chromatin association, integrity, and overall stability of Set1-COMPASS independent of H2Bub1. Therefore, we have uncovered a novel role for the H2B C-terminal helix in the trans-histone cross talk as a binding surface for Set1-COMPASS. We provide further insight into the trans-histone cross talk and propose that H2Bub1 stabilizes the nucleosome by preventing H2A-H2B eviction and, thereby, retains the "docking site" for Set1-COMPASS on chromatin to maintain its stable chromatin association, complex stability, and processive methylation.
Collapse
|
41
|
Thakar A, Parvin JD, Zlatanova J. BRCA1/BARD1 E3 ubiquitin ligase can modify histones H2A and H2B in the nucleosome particle. J Biomol Struct Dyn 2010; 27:399-406. [PMID: 19916563 DOI: 10.1080/07391102.2010.10507326] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BRCA1, the protein product of the Breast Cancer Susceptibility Gene (BRCA1) has been implicated in multiple pathways that preserve genome stability, including cell cycle control, DNA repair, transcription, and chromatin remodeling. BRCA1, in complex with another RING-domain protein BARD1, possesses ubiquitin-ligase activity. Only a few targets for this activity have been identified in vivo. Nucleosomal histones may also be targets in vivo since they can be modified by the BRCA1/BARD1 complex in vitro. Here we demonstrate that the BRCA1/BARD1 complex can ubiquitylate both free H2A and H2B histones and histones in the context of nucleosomal particles. These results raise the possibility that BRCA1/BARD1 can directly affect nucleosomal structure, dynamics, and function through its ability to modify nucleosomal histones.
Collapse
Affiliation(s)
- Amit Thakar
- Dept of Molecular Biology University of Wyoming, Laramie, WY 82071, USA
| | | | | |
Collapse
|
42
|
|
43
|
Hossain MA, Claggett JM, Nguyen T, Johnson TL. The cap binding complex influences H2B ubiquitination by facilitating splicing of the SUS1 pre-mRNA. RNA (NEW YORK, N.Y.) 2009; 15:1515-27. [PMID: 19561118 PMCID: PMC2714748 DOI: 10.1261/rna.1540409] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Pre-messenger RNA splicing is carried out by a large ribonucleoprotein complex called the spliceosome. Despite the striking evolutionary conservation of the spliceosomal components and their functions, controversy persists about the relative importance of splicing in Saccharomyces cerevisiae-particularly given the paucity of intron-containing genes in yeast. Here we show that splicing of one pre-messenger RNA, SUS1, a component of the histone H2B ubiquitin protease machinery, is essential for establishing the proper modification state of chromatin. One protein complex that is intimately involved in pre-mRNA splicing, the yeast cap-binding complex, appears to be particularly important, as evidenced by its extensive and unique genetic interactions with enzymes that catalyze histone H2B ubiquitination. Microarray studies show that cap binding complex (CBC) deletion has a global effect on gene expression, and for approximately 20% of these genes, this effect is suppressed when ubiquitination of histone H2B is eliminated. Consistent with this finding of histone H2B dependent effects on gene expression, deletion of the yeast cap binding complex leads to overubiquitination of histone H2B. A key component of the ubiquitin-protease module of the SAGA complex, Sus1, is encoded by a gene that contains two introns and is misspliced when the CBC is deleted, leading to destabilization of the ubiquitin protease complex and defective modulation of cellular H2B levels. These data demonstrate that pre-mRNA splicing plays a critical role in histone H2B ubiquitination and that the CBC in particular helps to establish the proper state of chromatin and proper expression of genes that are regulated at the level of histone H2B ubiquitination.
Collapse
Affiliation(s)
- Munshi Azad Hossain
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
44
|
Kallin EM, Cao R, Jothi R, Xia K, Cui K, Zhao K, Zhang Y. Genome-wide uH2A localization analysis highlights Bmi1-dependent deposition of the mark at repressed genes. PLoS Genet 2009; 5:e1000506. [PMID: 19503595 PMCID: PMC2683938 DOI: 10.1371/journal.pgen.1000506] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 05/05/2009] [Indexed: 12/13/2022] Open
Abstract
Polycomb group (PcG) proteins control organism development by regulating the expression of developmental genes. Transcriptional regulation by PcG proteins is achieved, at least partly, through the PRC2-mediated methylation on lysine 27 of histone H3 (H3K27) and PRC1-mediated ubiquitylation on lysine 119 of histone H2A (uH2A). As an integral component of PRC1, Bmi1 has been demonstrated to be critical for H2A ubiquitylation. Although recent studies have revealed the genome-wide binding patterns of some of the PRC1 and PRC2 components, as well as the H3K27me3 mark, there have been no reports describing genome-wide localization of uH2A. Using the recently developed ChIP-Seq technology, here, we report genome-wide localization of the Bmi1-dependent uH2A mark in MEF cells. Gene promoter averaging analysis indicates a peak of uH2A just inside the transcription start site (TSS) of well-annotated genes. This peak is enriched at promoters containing the H3K27me3 mark and represents the least expressed genes in WT MEF cells. In addition, peak finding reveals regions of local uH2A enrichment throughout the mouse genome, including almost 700 gene promoters. Genes with promoter peaks of uH2A exhibit lower-level expression when compared to genes that do not contain promoter peaks of uH2A. Moreover, we demonstrate that genes with uH2A peaks have increased expression upon Bmi1 knockout. Importantly, local enrichment of uH2A is not limited to regions containing the H3K27me3 mark. We describe the enrichment of H2A ubiquitylation at high-density CpG promoters and provide evidence to suggest that DNA methylation may be linked to uH2A at these regions. Thus, our work not only reveals Bmi1-dependent H2A ubiquitylation, but also suggests that uH2A targeting in differentiated cells may employ a different mechanism from that in ES cells. A wealth of recent studies has demonstrated the role of Bmi1-stimulated histone ubiquitylation in the repression of transcription at targeted genetic loci. However, the repressive function of this mark has never been extrapolated genome-wide. We have used deep sequencing technology to explore the global deposition of Bmi1-dependent H2A ubiquitylation (uH2A) in mouse embryonic fibroblast cells. Our study confirms the gene-specific repressive function of the uH2A mark on a genome-wide scale. In addition, we also analyzed the general trends of uH2A distribution with respect to genomic elements, such as various classes of gene promoters and transcribed regions. Our work implies that the mechanism of uH2A distribution in differentiated cells may vary from that in embryonic stem cells. Given the importance of the uH2A modification in fundamental biological processes and cancer, insight into the distribution of this modification has reaching implications in understanding the contribution of epigenetic silencing to cellular physiology.
Collapse
Affiliation(s)
- Eric M. Kallin
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ru Cao
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Raja Jothi
- Biostatistics Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Kai Xia
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kairong Cui
- Laboratory of Molecular Immunology, The National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Keji Zhao
- Laboratory of Molecular Immunology, The National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yi Zhang
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
45
|
Tanabe M, Kouzmenko AP, Ito S, Sawatsubashi S, Suzuki E, Fujiyama S, Yamagata K, Zhao Y, Kimura S, Ueda T, Murata T, Matsukawa H, Takeyama KI, Kato S. Activation of facultatively silenced Drosophila loci associates with increased acetylation of histone H2AvD. Genes Cells 2008; 13:1279-88. [PMID: 19032341 DOI: 10.1111/j.1365-2443.2008.01244.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
H2A.Z is an evolutionarily highly conserved non-allelic variant of histone H2A. H2A.Z and its homologues have been shown to involve in both chromatin silencing and activation. Although much of our knowledge of H2A.Z biological activity has come from studies on its yeast homologue Htz1, H2A.Z appears to have more complex and diverse functions in higher eukaryotes. To investigate the involvement of H2AvD, a Drosophila homologue of mammalian H2A.Z, in mechanisms of conditional activation of facultatively silenced genes, we generated transgenic Drosophila lines expressing H2AvD fused at the C- or N-terminus with the green fluorescent protein (GFP). Using heat shock-induced gene activation and polytene chromosome puff formation as an in vivo model system, we analyzed effects of H2AvD termini modifications on transcription. We found that N-terminally fused GFP inhibited H2AvD acetylation and impaired heat shock-induced puff formation and hsp70 gene activation. Our data suggest that the N-terminal region of H2AvD plays a pivotal role in transcriptional activation and that induction of transiently silenced Drosophila loci associates with increased acetylation of H2AvD.
Collapse
Affiliation(s)
- Masahiko Tanabe
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zheng YG, Wu J, Chen Z, Goodman M. Chemical regulation of epigenetic modifications: opportunities for new cancer therapy. Med Res Rev 2008; 28:645-87. [PMID: 18271058 DOI: 10.1002/med.20120] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetics is concerned about heritable changes in gene expression without alteration of the coding sequence. Epigenetic modification of chromatin includes methylation of genomic DNA as well as post-translational modification of chromatin-associated proteins, in particular, histones. The spectrum of histone and non-histone modifications ranges from the addition of relatively small groups such as methyl, acetyl and phosphoryl groups to the attachment of larger moieties such as poly(ADP-ribose) and small proteins ubiquitin or small ubiquitin-like modifier (SUMO). The combinatorial nature of DNA methylation and histone modifications constitutes a significant pathway of epigenetic regulation and considerably extends the information potential of the genetic code. Chromatin modification has emerged as a new fundamental mechanism for gene transcriptional activity control associated with many cellular processes like proliferation, growth, and differentiation. Also it is increasingly recognized that epigenetic modifications constitute important regulatory mechanisms for the pathogenesis of malignant transformations. We review here the recent progress in the development of chemical inhibitors/activators that target different chromatin modifying enzymes. Such potent natural or synthetic modulators can be utilized to establish the quantitative contributions of epigenetic modifications in DNA regulated pathways including transcription, replication, recombination and repair, as well as provide leads for developing new cancer therapeutics.
Collapse
Affiliation(s)
- Yujun George Zheng
- Department of Chemistry, Georgia State University, PO Box 4098, Atlanta, Georgia 30302-4098, USA.
| | | | | | | |
Collapse
|
47
|
Strietholt S, Maurer B, Peters MA, Pap T, Gay S. Epigenetic modifications in rheumatoid arthritis. Arthritis Res Ther 2008; 10:219. [PMID: 18947370 PMCID: PMC2592785 DOI: 10.1186/ar2500] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last decades, genetic factors for rheumatoid diseases like the HLA haplotypes have been studied extensively. However, during the past years of research, it has become more and more evident that the influence of epigenetic processes on the development of rheumatic diseases is probably as strong as the genetic background of a patient. Epigenetic processes are heritable changes in gene expression without alteration of the nucleotide sequence. Such modifications include chromatin methylation and post-translational modification of histones or other chromatin-associated proteins. The latter comprise the addition of methyl, acetyl, and phosphoryl groups or even larger moieties such as binding of ubiquitin or small ubiquitin-like modifier. The combinatory nature of these processes forms a complex network of epigenetic modifications that regulate gene expression through activation or silencing of genes. This review provides insight into the role of epigenetic alterations in the pathogenesis of rheumatoid arthritis and points out how a better understanding of such mechanisms may lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Simon Strietholt
- Institute of Experimental Musculoskeletal Medicine, University Hospital Munster, Domagkstrasse 3, 48149 Münster, Germany
| | | | | | | | | |
Collapse
|
48
|
Li HH, Willis MS, Lockyer P, Miller N, McDonough H, Glass DJ, Patterson C. Atrogin-1 inhibits Akt-dependent cardiac hypertrophy in mice via ubiquitin-dependent coactivation of Forkhead proteins. J Clin Invest 2008; 117:3211-23. [PMID: 17965779 DOI: 10.1172/jci31757] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 08/29/2007] [Indexed: 12/15/2022] Open
Abstract
Cardiac hypertrophy is a major cause of human morbidity and mortality. Although much is known about the pathways that promote hypertrophic responses, mechanisms that antagonize these pathways have not been as clearly defined. Atrogin-1, also known as muscle atrophy F-box, is an F-box protein that inhibits pathologic cardiac hypertrophy by participating in a ubiquitin ligase complex that triggers degradation of calcineurin, a factor involved in promotion of pathologic hypertrophy. Here we demonstrated that atrogin-1 also disrupted Akt-dependent pathways responsible for physiologic cardiac hypertrophy. Our results indicate that atrogin-1 does not affect the activity of Akt itself, but serves as a coactivator for members of the Forkhead family of transcription factors that function downstream of Akt. This coactivator function of atrogin-1 was dependent on its ubiquitin ligase activity and the deposition of polyubiquitin chains on lysine 63 of Foxo1 and Foxo3a. Transgenic mice expressing atrogin-1 in the heart displayed increased Foxo1 ubiquitylation and upregulation of known Forkhead target genes concomitant with suppression of cardiac hypertrophy, while mice lacking atrogin-1 displayed the opposite physiologic phenotype. These experiments define a role for lysine 63-linked ubiquitin chains in transcriptional coactivation and demonstrate that atrogin-1 uses this mechanism to disrupt physiologic cardiac hypertrophic signaling through its effects on Forkhead transcription factors.
Collapse
Affiliation(s)
- Hui-Hua Li
- Carolina Cardiovascular Biology Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7126, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The discovery of the ubiquitin system was awarded with the Nobel Prize in Chemistry in 2004. Labeling of intracellular proteins for degradation by a multienzymatic complex, called the proteasome, was identified as the main function of this system. Subsequently, it was discovered that the attachment of ubiquitin to proteins can modify their function without degradation. Finally, a number of other molecules were recognized to be conjugated to proteins in a manner similar to ubiquitin and were henceforth called ubiquitin-like proteins. This review provides an overview of this class of molecules and its implication for function, subcellular location, and half-life of proteins.
Collapse
Affiliation(s)
- Joerg Herrmann
- Division of Cardiovascular Diseases, Mayo Clinic Rochester, Rochester, MN 55905, USA
| | | | | |
Collapse
|
50
|
Zofall M, Grewal SIS. HULC, a Histone H2B Ubiquitinating Complex, Modulates Heterochromatin Independent of Histone Methylation in Fission Yeast. J Biol Chem 2007; 282:14065-72. [PMID: 17363370 DOI: 10.1074/jbc.m700292200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Heterochromatin in fission yeast is targeted dynamically by opposing chromatin-modifying activities capable of alleviating or promoting transcriptional gene silencing. In this study, we report the biochemical and genetic characterization of a ubiquitin-conjugating enzyme Rhp6 (a homolog of budding yeast Rad6), which has been shown to negatively affect stability of heterochromatic structures. We show that Rhp6 is a component of the multisubunit protein complex (termed HULC) that also contains two RING finger proteins Rfp1 and Rfp2, sharing homology with budding yeast Bre1 protein and a unique serine-rich protein Shf1. HULC is required for ubiquitination of histone H2B at lysine 119 (H2B-K119), and it localizes to heterochromatic sequences. Moreover, our analyses suggest that Rhp6-induced changes in heterochromatic silencing are mediated predominantly through H2B ubiquitination (ubH2B), and they correlate with increased RNA polymerase II levels at repeat elements embedded within heterochromatin domains. Interestingly, heterochromatic derepression caused by Rhp6 occurs independently of the involvement of HULC subunits and ubH2B in methylation of histone H3 at lysine 4 (H3K4me). These analyses implicate ubH2B in modulation of heterochromatin, which has important implications for dynamics and many functions associated with heterochromatic structures.
Collapse
Affiliation(s)
- Martin Zofall
- Laboratory of Biochemistry and Molecular Biology, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|