1
|
Bruman SM, Zubareva VM, Shugaeva TE, Lapashina AS, Feniouk BA. Activation of Bacterial F-ATPase by LDAO: Deciphering the Molecular Mechanism. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:374-388. [PMID: 40367080 DOI: 10.1134/s0006297924602600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 12/06/2024] [Accepted: 01/29/2025] [Indexed: 05/16/2025]
Abstract
Proton FOF1 ATP synthase catalyzes the formation of ATP from ADP and inorganic phosphate coupled with transmembrane proton transfer using the energy of the protonmotive force (pmf). As pmf decreases, the direction of the reaction is reversed and the enzyme generates pmf, transferring protons across the membrane using the energy of ATP hydrolysis. ATPase activity of the enzyme can be suppressed by ADP in a non-competitive manner (ADP-inhibition), and in a number of bacteria, it can be inhibited by conformational changes in the regulatory C-terminal domain of the ε subunit. Lauryldimethylamine oxide (LDAO), a zwitterionic detergent, is known to attenuate both of these inhibitory mechanisms, significantly increasing the ATPase activity of the enzyme. For this reason, LDAO is sometimes used for semi-quantitative estimation of the enzyme's susceptibility to these regulatory mechanisms. However, the binding site of LDAO in ATP synthase remains unknown. The mechanism by which the detergent counteracts ADP-inhibition and the inhibition involving the ε subunit is also unclear. We performed molecular docking and predicted that LDAO binding might occur at the catalytic site of ATP synthase, whether empty or containing nucleotides. Molecular dynamics simulations showed that LDAO could affect the mobility of the loop in the β subunit (residues β404-415 in Escherichia coli ATP synthase) near the catalytic site. Mutagenesis of residue β409 in the E. coli enzyme and the corresponding β419 residue in the Bacillus subtilis ATP synthase revealed that the type of side chain of this residue indeed affects LDAO-dependent stimulation of ATPase activity. We also found that LDAO activates the enzyme more strongly in the presence of 100 mM sulfate compared to sulfate-free medium. This phenomenon is likely due to the enhancement of ADP-inhibition of the enzyme by sulfate.
Collapse
Affiliation(s)
- Sofya M Bruman
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Valeria M Zubareva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Tatiana E Shugaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anna S Lapashina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Boris A Feniouk
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
2
|
Turina P. Modulation of the H +/ATP coupling ratio by ADP and ATP as a possible regulatory feature in the F-type ATP synthases. Front Mol Biosci 2022; 9:1023031. [PMID: 36275634 PMCID: PMC9583940 DOI: 10.3389/fmolb.2022.1023031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
F-type ATP synthases are transmembrane enzymes, which play a central role in the metabolism of all aerobic and photosynthetic cells and organisms, being the major source of their ATP synthesis. Catalysis occurs via a rotary mechanism, in which the free energy of a transmembrane electrochemical ion gradient is converted into the free energy of ATP phosphorylation from ADP and Pi, and vice versa. An ADP, tightly bound to one of the three catalytic sites on the stator head, is associated with catalysis inhibition, which is relieved by the transmembrane proton gradient and by ATP. By preventing wasteful ATP hydrolysis in times of low osmotic energy and low ATP/ADP ratio, such inhibition constitutes a classical regulatory feedback effect, likely to be an integral component of in vivo regulation. The present miniview focuses on an additional putative regulatory phenomenon, which has drawn so far little attention, consisting in a substrate-induced tuning of the H+/ATP coupling ratio during catalysis, which might represent an additional key to energy homeostasis in the cell. Experimental pieces of evidence in support of such a phenomenon are reviewed.
Collapse
Affiliation(s)
- Paola Turina
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Zubareva VM, Lapashina AS, Shugaeva TE, Litvin AV, Feniouk BA. Rotary Ion-Translocating ATPases/ATP Synthases: Diversity, Similarities, and Differences. BIOCHEMISTRY (MOSCOW) 2021; 85:1613-1630. [PMID: 33705299 DOI: 10.1134/s0006297920120135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ion-translocating ATPases and ATP synthases (F-, V-, A-type ATPases, and several P-type ATPases and ABC-transporters) catalyze ATP hydrolysis or ATP synthesis coupled with the ion transport across the membrane. F-, V-, and A-ATPases are protein nanomachines that combine transmembrane transport of protons or sodium ions with ATP synthesis/hydrolysis by means of a rotary mechanism. These enzymes are composed of two multisubunit subcomplexes that rotate relative to each other during catalysis. Rotary ATPases phosphorylate/dephosphorylate nucleotides directly, without the generation of phosphorylated protein intermediates. F-type ATPases are found in chloroplasts, mitochondria, most eubacteria, and in few archaea. V-type ATPases are eukaryotic enzymes present in a variety of cellular membranes, including the plasma membrane, vacuoles, late endosomes, and trans-Golgi cisternae. A-type ATPases are found in archaea and some eubacteria. F- and A-ATPases have two main functions: ATP synthesis powered by the proton motive force (pmf) or, in some prokaryotes, sodium-motive force (smf) and generation of the pmf or smf at the expense of ATP hydrolysis. In prokaryotes, both functions may be vitally important, depending on the environment and the presence of other enzymes capable of pmf or smf generation. In eukaryotes, the primary and the most crucial function of F-ATPases is ATP synthesis. Eukaryotic V-ATPases function exclusively as ATP-dependent proton pumps that generate pmf necessary for the transmembrane transport of ions and metabolites and are vitally important for pH regulation. This review describes the diversity of rotary ion-translocating ATPases from different organisms and compares the structural, functional, and regulatory features of these enzymes.
Collapse
Affiliation(s)
- V M Zubareva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A S Lapashina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - T E Shugaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A V Litvin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - B A Feniouk
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
4
|
Pavez-Giani MG, Sánchez-Aguilera PI, Bomer N, Miyamoto S, Booij HG, Giraldo P, Oberdorf-Maass SU, Nijholt KT, Yurista SR, Milting H, van der Meer P, de Boer RA, Heller Brown J, Sillje HWH, Westenbrink BD. ATPase Inhibitory Factor-1 Disrupts Mitochondrial Ca 2+ Handling and Promotes Pathological Cardiac Hypertrophy through CaMKIIδ. Int J Mol Sci 2021; 22:4427. [PMID: 33922643 PMCID: PMC8122940 DOI: 10.3390/ijms22094427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
ATPase inhibitory factor-1 (IF1) preserves cellular ATP under conditions of respiratory collapse, yet the function of IF1 under normal respiring conditions is unresolved. We tested the hypothesis that IF1 promotes mitochondrial dysfunction and pathological cardiomyocyte hypertrophy in the context of heart failure (HF). Methods and results: Cardiac expression of IF1 was increased in mice and in humans with HF, downstream of neurohumoral signaling pathways and in patterns that resembled the fetal-like gene program. Adenoviral expression of wild-type IF1 in primary cardiomyocytes resulted in pathological hypertrophy and metabolic remodeling as evidenced by enhanced mitochondrial oxidative stress, reduced mitochondrial respiratory capacity, and the augmentation of extramitochondrial glycolysis. Similar perturbations were observed with an IF1 mutant incapable of binding to ATP synthase (E55A mutation), an indication that these effects occurred independent of binding to ATP synthase. Instead, IF1 promoted mitochondrial fragmentation and compromised mitochondrial Ca2+ handling, which resulted in sarcoplasmic reticulum Ca2+ overloading. The effects of IF1 on Ca2+ handling were associated with the cytosolic activation of calcium-calmodulin kinase II (CaMKII) and inhibition of CaMKII or co-expression of catalytically dead CaMKIIδC was sufficient to prevent IF1 induced pathological hypertrophy. Conclusions: IF1 represents a novel member of the fetal-like gene program that contributes to mitochondrial dysfunction and pathological cardiac remodeling in HF. Furthermore, we present evidence for a novel, ATP-synthase-independent, role for IF1 in mitochondrial Ca2+ handling and mitochondrial-to-nuclear crosstalk involving CaMKII.
Collapse
Affiliation(s)
- Mario G. Pavez-Giani
- Department of Cardiology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (P.I.S.-A.); (N.B.); (H.G.B.); (P.G.); (S.U.O.-M.); (K.T.N.); (S.R.Y.); (P.v.d.M.); (R.A.d.B.); (H.W.H.S.)
| | - Pablo I. Sánchez-Aguilera
- Department of Cardiology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (P.I.S.-A.); (N.B.); (H.G.B.); (P.G.); (S.U.O.-M.); (K.T.N.); (S.R.Y.); (P.v.d.M.); (R.A.d.B.); (H.W.H.S.)
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (P.I.S.-A.); (N.B.); (H.G.B.); (P.G.); (S.U.O.-M.); (K.T.N.); (S.R.Y.); (P.v.d.M.); (R.A.d.B.); (H.W.H.S.)
| | - Shigeki Miyamoto
- Department of Pharmacology, University of California San Diego, San Diego, CA 92093, USA; (S.M.); (J.H.B.)
| | - Harmen G. Booij
- Department of Cardiology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (P.I.S.-A.); (N.B.); (H.G.B.); (P.G.); (S.U.O.-M.); (K.T.N.); (S.R.Y.); (P.v.d.M.); (R.A.d.B.); (H.W.H.S.)
| | - Paula Giraldo
- Department of Cardiology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (P.I.S.-A.); (N.B.); (H.G.B.); (P.G.); (S.U.O.-M.); (K.T.N.); (S.R.Y.); (P.v.d.M.); (R.A.d.B.); (H.W.H.S.)
| | - Silke U. Oberdorf-Maass
- Department of Cardiology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (P.I.S.-A.); (N.B.); (H.G.B.); (P.G.); (S.U.O.-M.); (K.T.N.); (S.R.Y.); (P.v.d.M.); (R.A.d.B.); (H.W.H.S.)
| | - Kirsten T. Nijholt
- Department of Cardiology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (P.I.S.-A.); (N.B.); (H.G.B.); (P.G.); (S.U.O.-M.); (K.T.N.); (S.R.Y.); (P.v.d.M.); (R.A.d.B.); (H.W.H.S.)
| | - Salva R. Yurista
- Department of Cardiology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (P.I.S.-A.); (N.B.); (H.G.B.); (P.G.); (S.U.O.-M.); (K.T.N.); (S.R.Y.); (P.v.d.M.); (R.A.d.B.); (H.W.H.S.)
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany;
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (P.I.S.-A.); (N.B.); (H.G.B.); (P.G.); (S.U.O.-M.); (K.T.N.); (S.R.Y.); (P.v.d.M.); (R.A.d.B.); (H.W.H.S.)
| | - Rudolf A. de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (P.I.S.-A.); (N.B.); (H.G.B.); (P.G.); (S.U.O.-M.); (K.T.N.); (S.R.Y.); (P.v.d.M.); (R.A.d.B.); (H.W.H.S.)
| | - Joan Heller Brown
- Department of Pharmacology, University of California San Diego, San Diego, CA 92093, USA; (S.M.); (J.H.B.)
| | - Herman W. H. Sillje
- Department of Cardiology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (P.I.S.-A.); (N.B.); (H.G.B.); (P.G.); (S.U.O.-M.); (K.T.N.); (S.R.Y.); (P.v.d.M.); (R.A.d.B.); (H.W.H.S.)
| | - B. Daan Westenbrink
- Department of Cardiology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (P.I.S.-A.); (N.B.); (H.G.B.); (P.G.); (S.U.O.-M.); (K.T.N.); (S.R.Y.); (P.v.d.M.); (R.A.d.B.); (H.W.H.S.)
| |
Collapse
|
5
|
Tang C, Zhang Z, Tian S, Cai P. Transcriptomic responses of Microcystis aeruginosa under electromagnetic radiation exposure. Sci Rep 2021; 11:2123. [PMID: 33483577 PMCID: PMC7822859 DOI: 10.1038/s41598-020-80830-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 12/28/2020] [Indexed: 11/24/2022] Open
Abstract
Electromagnetic radiation is an important environmental factor. It has a potential threat to public health and ecological environment. However, the mechanism by which electromagnetic radiation exerts these biological effects remains unclear. In this study, the effect of Microcystis aeruginosa under electromagnetic radiation (1.8 GHz, 40 V/m) was studied by using transcriptomics. A total of 306 differentially expressed genes, including 121 upregulated and 185 downregulated genes, were obtained in this study. The differentially expressed genes were significantly enriched in the ribosome, oxidative phosphorylation and carbon fixation pathways, indicating that electromagnetic radiation may inhibit protein synthesis and affect cyanobacterial energy metabolism and photosynthesis. The total ATP synthase activity and ATP content significantly increased, whereas H+K+-ATPase activity showed no significant changes. Our results suggest that the energy metabolism pathway may respond positively to electromagnetic radiation. In the future, systematic studies on the effects of electromagnetic radiation based on different intensities, frequencies, and exposure times are warranted; to deeply understand and reveal the target and mechanism of action of electromagnetic exposure on organisms.
Collapse
Affiliation(s)
- Chao Tang
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, People's Republic of China
- Xiamen Key Laboratory of Physical Environment, 1799 Jimei Road, Xiamen, 361021, People's Republic of China
| | - Ziyan Zhang
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, People's Republic of China
- Xiamen Key Laboratory of Physical Environment, 1799 Jimei Road, Xiamen, 361021, People's Republic of China
| | - Shen Tian
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, People's Republic of China
- Xiamen Key Laboratory of Physical Environment, 1799 Jimei Road, Xiamen, 361021, People's Republic of China
| | - Peng Cai
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, People's Republic of China.
- Xiamen Key Laboratory of Physical Environment, 1799 Jimei Road, Xiamen, 361021, People's Republic of China.
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China.
| |
Collapse
|
6
|
ATP Analogues for Structural Investigations: Case Studies of a DnaB Helicase and an ABC Transporter. Molecules 2020; 25:molecules25225268. [PMID: 33198135 PMCID: PMC7698047 DOI: 10.3390/molecules25225268] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022] Open
Abstract
Nucleoside triphosphates (NTPs) are used as chemical energy source in a variety of cell systems. Structural snapshots along the NTP hydrolysis reaction coordinate are typically obtained by adding stable, nonhydrolyzable adenosine triphosphate (ATP) -analogues to the proteins, with the goal to arrest a state that mimics as closely as possible a physiologically relevant state, e.g., the pre-hydrolytic, transition and post-hydrolytic states. We here present the lessons learned on two distinct ATPases on the best use and unexpected pitfalls observed for different analogues. The proteins investigated are the bacterial DnaB helicase from Helicobacter pylori and the multidrug ATP binding cassette (ABC) transporter BmrA from Bacillus subtilis, both belonging to the same division of P-loop fold NTPases. We review the magnetic-resonance strategies which can be of use to probe the binding of the ATP-mimics, and present carbon-13, phosphorus-31, and vanadium-51 solid-state nuclear magnetic resonance (NMR) spectra of the proteins or the bound molecules to unravel conformational and dynamic changes upon binding of the ATP-mimics. Electron paramagnetic resonance (EPR), and in particular W-band electron-electron double resonance (ELDOR)-detected NMR, is of complementary use to assess binding of vanadate. We discuss which analogues best mimic the different hydrolysis states for the DnaB helicase and the ABC transporter BmrA. These might be relevant also to structural and functional studies of other NTPases.
Collapse
|
7
|
Ebanks B, Ingram TL, Chakrabarti L. ATP synthase and Alzheimer's disease: putting a spin on the mitochondrial hypothesis. Aging (Albany NY) 2020; 12:16647-16662. [PMID: 32853175 PMCID: PMC7485717 DOI: 10.18632/aging.103867] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022]
Abstract
It is estimated that over 44 million people across the globe have dementia, and half of these cases are believed to be Alzheimer’s disease (AD). As the proportion of the global population which is over the age 60 increases so will the number of individuals living with AD. This will result in ever-increasing demands on healthcare systems and the economy. AD can be either sporadic or familial, but both present with similar pathobiology and symptoms. Three prominent theories about the cause of AD are the amyloid, tau and mitochondrial hypotheses. The mitochondrial hypothesis focuses on mitochondrial dysfunction in AD, however little attention has been given to the potential dysfunction of the mitochondrial ATP synthase in AD. ATP synthase is a proton pump which harnesses the chemical potential energy of the proton gradient across the inner mitochondrial membrane (IMM), generated by the electron transport chain (ETC), in order to produce the cellular energy currency ATP. This review presents the evidence accumulated so far that demonstrates dysfunction of ATP synthase in AD, before highlighting two potential pharmacological interventions which may modulate ATP synthase.
Collapse
Affiliation(s)
- Brad Ebanks
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Thomas L Ingram
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK.,MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Chesterfield, UK
| |
Collapse
|
8
|
Lapashina AS, Shugaeva TE, Berezina KM, Kholina TD, Feniouk BA. Amino Acid Residues β139, β189, and β319 Modulate ADP-Inhibition in Escherichia coli H+-F OF 1-ATP Synthase. BIOCHEMISTRY (MOSCOW) 2019; 84:407-415. [PMID: 31228932 DOI: 10.1134/s0006297919040084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proton-translocating FOF1-ATP synthase (F-type ATPase, F-ATPase or FOF1) performs ATP synthesis/hydrolysis coupled to proton transport across the membrane in mitochondria, chloroplasts, and most eubacteria. The ATPase activity of the enzyme is suppressed in the absence of protonmotive force by several regulatory mechanisms. The most conserved of these mechanisms is noncompetitive inhibition of ATP hydrolysis by the MgADP complex (ADP-inhibition) which has been found in all the enzymes studied. When MgADP binds without phosphate in the catalytic site, the enzyme enters an inactive state, and MgADP gets locked in the catalytic site and does not exchange with the medium. The degree of ADP-inhibition varies in FOF1 enzymes from different organisms. In the Escherichia coli enzyme, ADP-inhibition is relatively weak and, in contrast to other organisms, is enhanced rather than suppressed by phosphate. In this study, we used site-directed mutagenesis to investigate the role of amino acid residues β139, β158, β189, and β319 of E. coli FOF1-ATP synthase in the mechanism of ADP-inhibition and its modulation by the protonmotive force. The amino acid residues in these positions differ in the enzymes from beta- and gammaproteobacteria (including E. coli) and FOF1-ATP synthases from other eubacteria, mitochondria, and chloroplasts. The βN158L substitution produced no effect on the enzyme activity, while substitutions βF139Y, βF189L, and βV319T only slightly affected ATP (1 mM) hydrolysis. However, in a mixture of ATP and ADP, the activity of the mutants was less suppressed than that of the wild-type enzyme. In addition, mutations βF189L and βV319T weakened the ATPase activity inhibition by phosphate in the presence of ADP. We suggest that residues β139, β189, and β319 are involved in the mechanism of ADP-inhibition and its modulation by phosphate.
Collapse
Affiliation(s)
- A S Lapashina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - T E Shugaeva
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - K M Berezina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - T D Kholina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - B A Feniouk
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
9
|
Mutation Q259L in subunit beta in Bacillus subtilis ATP synthase attenuates ADP-inhibition and decreases fitness in mixed cultures. Biochem Biophys Res Commun 2018; 509:102-107. [PMID: 30580998 DOI: 10.1016/j.bbrc.2018.12.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/11/2018] [Indexed: 11/23/2022]
Abstract
The ATPase activity of H+-FOF1-ATP synthase (FOF1) is down-regulated by several mechanisms. The most universal of them found in bacterial, chloroplast and mitochondrial enzymes is non-competitive inhibition by MgADP (ADP-inhibition). When MgADP binds in a catalytic site in the absence of phosphate, the nucleotide might be trapped instead of being released and replaced by new MgATP. In this case the enzyme becomes inactivated, and MgADP release is required for re-activation. The degree of ADP-inhibition varies between different organisms: it is strong in mitochondrial and chloroplast FOF1 and in enzymes of some bacteria (including Bacillus PS3 sp., and Bacillus subtilis), but in FOF1 of Escherichia coli it is much weaker. It was shown that mutation betaGln259Leu in Bacillus PS3 FOF1 noticeably relieves its strong ADP-inhibition. In this work, we introduced the same mutation in FOF1 from B. subtilis. ADP-inhibition in the mutant FOF1 was also attenuated in comparison to the wild-type enzyme. The ATPase activity in membrane preparations was 3 fold higher in the mutant. Mutant enzyme was capable of ATP-driven proton pumping, and its ATPase activity was stimulated by dissipation of the protonmotive force, implying that the coupling efficiency between ATP hydrolysis and proton transport was not impaired by the mutation. We observed no effect of mutation on the growth rate of B. subtilis in pure cultures. However, in competition growth experiments when the wild type and the mutant strains were cultivated together in mixed cultures, the wild type strain always crowded out the mutant. To our knowledge, this is the first demonstration of the negative effect of FOF1 ADP-inhibition attenuation in vivo.
Collapse
|
10
|
Lapashina AS, Feniouk BA. ADP-Inhibition of H+-F OF 1-ATP Synthase. BIOCHEMISTRY (MOSCOW) 2018; 83:1141-1160. [PMID: 30472953 DOI: 10.1134/s0006297918100012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
H+-FOF1-ATP synthase (F-ATPase, F-type ATPase, FOF1 complex) catalyzes ATP synthesis from ADP and inorganic phosphate in eubacteria, mitochondria, chloroplasts, and some archaea. ATP synthesis is powered by the transmembrane proton transport driven by the proton motive force (PMF) generated by the respiratory or photosynthetic electron transport chains. When the PMF is decreased or absent, ATP synthase catalyzes the reverse reaction, working as an ATP-dependent proton pump. The ATPase activity of the enzyme is regulated by several mechanisms, of which the most conserved is the non-competitive inhibition by the MgADP complex (ADP-inhibition). When ADP binds to the catalytic site without phosphate, the enzyme may undergo conformational changes that lock bound ADP, resulting in enzyme inactivation. PMF can induce release of inhibitory ADP and reactivate ATP synthase; the threshold PMF value required for enzyme reactivation might exceed the PMF for ATP synthesis. Moreover, membrane energization increases the catalytic site affinity to phosphate, thereby reducing the probability of ADP binding without phosphate and preventing enzyme transition to the ADP-inhibited state. Besides phosphate, oxyanions (e.g., sulfite and bicarbonate), alcohols, lauryldimethylamine oxide, and a number of other detergents can weaken ADP-inhibition and increase ATPase activity of the enzyme. In this paper, we review the data on ADP-inhibition of ATP synthases from different organisms and discuss the in vivo role of this phenomenon and its relationship with other regulatory mechanisms, such as ATPase activity inhibition by subunit ε and nucleotide binding in the noncatalytic sites of the enzyme. It should be noted that in Escherichia coli enzyme, ADP-inhibition is relatively weak and rather enhanced than prevented by phosphate.
Collapse
Affiliation(s)
- A S Lapashina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - B A Feniouk
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
11
|
Lapashina AS, Prikhodko AS, Shugaeva TE, Feniouk BA. Residue 249 in subunit beta regulates ADP inhibition and its phosphate modulation in Escherichia coli ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:181-188. [PMID: 30528692 DOI: 10.1016/j.bbabio.2018.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 11/29/2022]
Abstract
ATPase activity of proton-translocating FOF1-ATP synthase (F-type ATPase or F-ATPase) is suppressed in the absence of protonmotive force by several regulatory mechanisms. The most conservative of these mechanisms found in all enzymes studied so far is allosteric inhibition of ATP hydrolysis by MgADP (ADP-inhibition). When MgADP is bound without phosphate in the catalytic site, the enzyme lapses into an inactive state with MgADP trapped. In chloroplasts and mitochondria, as well as in most bacteria, phosphate prevents MgADP inhibition. However, in Escherichia coli ATP synthase ADP-inhibition is relatively weak and phosphate does not prevent it but seems to enhance it. We found that a single amino acid residue in subunit β is responsible for these features of E. coli enzyme. Mutation βL249Q significantly enhanced ADP-inhibition in E. coli ATP synthase, increased the extent of ATP hydrolysis stimulation by sulfite, and rendered the ADP-inhibition sensitive to phosphate in the same manner as observed in FOF1 from mitochondria, chloroplasts, and most aerobic\photosynthetic bacteria.
Collapse
Affiliation(s)
- Anna S Lapashina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasia S Prikhodko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Tatiana E Shugaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Boris A Feniouk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
12
|
Noji H, Ueno H, McMillan DGG. Catalytic robustness and torque generation of the F 1-ATPase. Biophys Rev 2017; 9:103-118. [PMID: 28424741 PMCID: PMC5380711 DOI: 10.1007/s12551-017-0262-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/13/2017] [Indexed: 12/28/2022] Open
Abstract
The F1-ATPase is the catalytic portion of the FoF1 ATP synthase and acts as a rotary molecular motor when it hydrolyzes ATP. Two decades have passed since the single-molecule rotation assay of F1-ATPase was established. Although several fundamental issues remain elusive, basic properties of F-type ATPases as motor proteins have been well characterized, and a large part of the reaction scheme has been revealed by the combination of extensive structural, biochemical, biophysical, and theoretical studies. This review is intended to provide a concise summary of the fundamental features of F1-ATPases, by use of the well-described model F1 from the thermophilic Bacillus PS3 (TF1). In the last part of this review, we focus on the robustness of the rotary catalysis of F1-ATPase to provide a perspective on the re-designing of novel molecular machines.
Collapse
Affiliation(s)
- Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656 Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656 Japan
| | - Duncan G. G. McMillan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656 Japan
| |
Collapse
|
13
|
Hurst S, Hoek J, Sheu SS. Mitochondrial Ca 2+ and regulation of the permeability transition pore. J Bioenerg Biomembr 2017; 49:27-47. [PMID: 27497945 PMCID: PMC5393273 DOI: 10.1007/s10863-016-9672-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/31/2016] [Indexed: 02/06/2023]
Abstract
The mitochondrial permeability transition pore was originally described in the 1970's as a Ca2+ activated pore and has since been attributed to the pathogenesis of many diseases. Here we evaluate how each of the current models of the pore complex fit to what is known about how Ca2+ regulates the pore, and any insight that provides into the molecular identity of the pore complex. We also discuss the central role of Ca2+ in modulating the pore's open probability by directly regulating processes, such as ATP/ADP balance through the tricarboxylic acid cycle, electron transport chain, and mitochondrial membrane potential. We review how Ca2+ influences second messengers such as reactive oxygen/nitrogen species production and polyphosphate formation. We discuss the evidence for how Ca2+ regulates post-translational modification of cyclophilin D including phosphorylation by glycogen synthase kinase 3 beta, deacetylation by sirtuins, and oxidation/ nitrosylation of key residues. Lastly we introduce a novel view into how Ca2+ activated proteolysis through calpains in the mitochondria may be a driver of sustained pore opening during pathologies such as ischemia reperfusion injury.
Collapse
Affiliation(s)
- Stephen Hurst
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Suite 543D, Philadelphia, PA, 19107, USA
| | - Jan Hoek
- Mitocare Center for Mitochondria Research, Department of Pathology Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Suite 543D, Philadelphia, PA, 19107, USA.
| |
Collapse
|
14
|
Ruas JS, Siqueira-Santos ES, Amigo I, Rodrigues-Silva E, Kowaltowski AJ, Castilho RF. Underestimation of the Maximal Capacity of the Mitochondrial Electron Transport System in Oligomycin-Treated Cells. PLoS One 2016; 11:e0150967. [PMID: 26950698 PMCID: PMC4780810 DOI: 10.1371/journal.pone.0150967] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/22/2016] [Indexed: 12/21/2022] Open
Abstract
The maximal capacity of the mitochondrial electron transport system (ETS) in intact cells is frequently estimated by promoting protonophore-induced maximal oxygen consumption preceded by inhibition of oxidative phosphorylation by oligomycin. In the present study, human glioma (T98G and U-87MG) and prostate cancer (PC-3) cells were titrated with different concentrations of the protonophore CCCP to induce maximal oxygen consumption rate (OCR) within respirometers in a conventional growth medium. The results demonstrate that the presence of oligomycin or its A-isomer leads to underestimation of maximal ETS capacity. In the presence of oligomycin, the spare respiratory capacity (SRC), i.e., the difference between the maximal and basal cellular OCR, was underestimated by 25 to 45%. The inhibitory effect of oligomycin on SRC was more pronounced in T98G cells and was observed in both suspended and attached cells. Underestimation of SRC also occurred when oxidative phosphorylation was fully inhibited by the ATP synthase inhibitor citreoviridin. Further experiments indicated that oligomycin cannot be replaced by the adenine nucleotide translocase inhibitors bongkrekic acid or carboxyatractyloside because, although these compounds have effects in permeabilized cells, they do not inhibit oxidative phosphorylation in intact cells. We replaced CCCP by FCCP, another potent protonophore and similar results were observed. Lower maximal OCR and SRC values were obtained with the weaker protonophore 2,4-dinitrophenol, and these parameters were not affected by the presence of oligomycin. In permeabilized cells or isolated brain mitochondria incubated with respiratory substrates, only a minor inhibitory effect of oligomycin on CCCP-induced maximal OCR was observed. We conclude that unless a previously validated protocol is employed, maximal ETS capacity in intact cells should be estimated without oligomycin. The inhibitory effect of an ATP synthase blocker on potent protonophore-induced maximal OCR may be associated with impaired metabolism of mitochondrial respiratory substrates.
Collapse
Affiliation(s)
- Juliana S. Ruas
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Edilene S. Siqueira-Santos
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ignacio Amigo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Erika Rodrigues-Silva
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Alicia J. Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Roger F. Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
- * E-mail:
| |
Collapse
|
15
|
Antal TK, Krendeleva TE, Tyystjärvi E. Multiple regulatory mechanisms in the chloroplast of green algae: relation to hydrogen production. PHOTOSYNTHESIS RESEARCH 2015; 125:357-81. [PMID: 25986411 DOI: 10.1007/s11120-015-0157-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 05/11/2015] [Indexed: 05/10/2023]
Abstract
A complex regulatory network in the chloroplast of green algae provides an efficient tool for maintenance of energy and redox balance in the cell under aerobic and anaerobic conditions. In this review, we discuss the structural and functional organizations of electron transport pathways in the chloroplast, and regulation of photosynthesis in the green microalga Chlamydomonas reinhardtii. The focus is on the regulatory mechanisms induced in response to nutrient deficiency stress and anoxia and especially on the role of a hydrogenase-mediated reaction in adaptation to highly reducing conditions and ATP deficiency in the cell.
Collapse
Affiliation(s)
- Taras K Antal
- Faculty of Biology, Moscow State University, Vorobyevi Gory, Moscow, 119992, Russia,
| | | | | |
Collapse
|
16
|
Tikhonov AN. Induction events and short-term regulation of electron transport in chloroplasts: an overview. PHOTOSYNTHESIS RESEARCH 2015; 125:65-94. [PMID: 25680580 DOI: 10.1007/s11120-015-0094-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/26/2015] [Indexed: 05/03/2023]
Abstract
Regulation of photosynthetic electron transport at different levels of structural and functional organization of photosynthetic apparatus provides efficient performance of oxygenic photosynthesis in plants. This review begins with a brief overview of the chloroplast electron transport chain. Then two noninvasive biophysical methods (measurements of slow induction of chlorophyll a fluorescence and EPR signals of oxidized P700 centers) are exemplified to illustrate the possibility of monitoring induction events in chloroplasts in vivo and in situ. Induction events in chloroplasts are considered and briefly discussed in the context of short-term mechanisms of the following regulatory processes: (i) pH-dependent control of the intersystem electron transport; (ii) the light-induced activation of the Calvin-Benson cycle; (iii) optimization of electron transport due to fitting alternative pathways of electron flow and partitioning light energy between photosystems I and II; and (iv) the light-induced remodeling of photosynthetic apparatus and thylakoid membranes.
Collapse
|
17
|
Bonora M, Wieckowski MR, Chinopoulos C, Kepp O, Kroemer G, Galluzzi L, Pinton P. Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene 2015; 34:1475-86. [PMID: 24727893 DOI: 10.1038/onc.2014.96] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 02/20/2014] [Accepted: 02/27/2014] [Indexed: 12/14/2022]
Abstract
The term mitochondrial permeability transition (MPT) is commonly used to indicate an abrupt increase in the permeability of the inner mitochondrial membrane to low molecular weight solutes. Widespread MPT has catastrophic consequences for the cell, de facto marking the boundary between cellular life and death. MPT results indeed in the structural and functional collapse of mitochondria, an event that commits cells to suicide via regulated necrosis or apoptosis. MPT has a central role in the etiology of both acute and chronic diseases characterized by the loss of post-mitotic cells. Moreover, cancer cells are often relatively insensitive to the induction of MPT, underlying their increased resistance to potentially lethal cues. Thus, intense efforts have been dedicated not only at the understanding of MPT in mechanistic terms, but also at the development of pharmacological MPT modulators. In this setting, multiple mitochondrial and extramitochondrial proteins have been suspected to critically regulate the MPT. So far, however, only peptidylprolyl isomerase F (best known as cyclophilin D) appears to constitute a key component of the so-called permeability transition pore complex (PTPC), the supramolecular entity that is believed to mediate MPT. Here, after reviewing the structural and functional features of the PTPC, we summarize recent findings suggesting that another of its core components is represented by the c subunit of mitochondrial ATP synthase.
Collapse
Affiliation(s)
- M Bonora
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Interdisciplinary Centre for the Study of Inflammation (ICSI), University of Ferrara, Ferrara, Italy
| | - M R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - C Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - O Kepp
- 1] Equipe 11 labelisée par la Ligue Nationale contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France [2] Université Paris Descartes/Paris 5, Sorbonne Paris Cité, Paris, France [3] Metabolomics and Cell Biology platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France
| | - G Kroemer
- 1] Equipe 11 labelisée par la Ligue Nationale contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France [2] Université Paris Descartes/Paris 5, Sorbonne Paris Cité, Paris, France [3] Metabolomics and Cell Biology platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France [4] Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - L Galluzzi
- 1] Equipe 11 labelisée par la Ligue Nationale contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France [2] Université Paris Descartes/Paris 5, Sorbonne Paris Cité, Paris, France [3] Gustave Roussy Comprehensive Cancer Center, Villejuif, France
| | - P Pinton
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Interdisciplinary Centre for the Study of Inflammation (ICSI), University of Ferrara, Ferrara, Italy
| |
Collapse
|
18
|
Morciano G, Giorgi C, Bonora M, Punzetti S, Pavasini R, Wieckowski MR, Campo G, Pinton P. Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury. J Mol Cell Cardiol 2014; 78:142-53. [PMID: 25172387 DOI: 10.1016/j.yjmcc.2014.08.015] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
Abstract
The mitochondrial permeability transition is a key event in cell death. Intense research efforts have been focused on elucidating the molecular components of the mitochondrial permeability transition pore (mPTP) to improve the understanding and treatment of various pathologies, including neurodegenerative disorders, cancer and cardiac diseases. Several molecular factors have been proposed as core components of the mPTP; however, further investigation has indicated that these factors are among a wide range of regulators. Thus, the scientific community lacks a clear model of the mPTP. Here, we review the molecular factors involved in the regulation and formation of the mPTP. Furthermore, we propose that the mitochondrial ATP synthase, specifically its c subunit, is the central core component of the mPTP complex. Moreover, we discuss the involvement of the mPTP in ischemia and reperfusion as well as the results of clinical studies targeting the mPTP to ameliorate ischemia-reperfusion injury. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease".
Collapse
Affiliation(s)
- Giampaolo Morciano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Massimo Bonora
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Silvia Punzetti
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria S. Anna and LTTA Center, Ferrara, Italy
| | - Rita Pavasini
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria S. Anna and LTTA Center, Ferrara, Italy
| | - Mariusz R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Gianluca Campo
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria S. Anna and LTTA Center, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
19
|
Zharova TV, Vinogradov AD. Oxidative phosphorylation and respiratory control phenomenon in Paracoccus denitrificans plasma membrane. BIOCHEMISTRY (MOSCOW) 2014; 77:1000-7. [PMID: 23157259 DOI: 10.1134/s0006297912090064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Changes in respiratory activity, transmembrane electric potential, and ATP synthesis as induced by additions of limited amounts of ADP and P(i) to tightly coupled inverted (inside-out) Paracoccus denitrificans plasma membrane vesicles were traced. The pattern of the changes was qualitatively the same as those observed for coupled mitochondria during the classical State 4-State 3-State 4 transition. Bacterial vesicles devoid of energy-dependent permeability barriers for the substrates of oxidation and phosphorylation were used as a simple experimental model to investigate two possible mechanisms of respiratory control: (i) in State 4 phosphoryl transfer potential (ATP/ADP × P(i)) is equilibrated with proton-motive force by reversibly operating F(1)·F(o)-ATPase (thermodynamic control); (ii) in State 4 apparent "equilibrium" is reached by unidirectional operation of proton motive force-activated F(1)·F(o)-ATP synthase. The data support the kinetic mechanism of the respiratory control phenomenon.
Collapse
Affiliation(s)
- T V Zharova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | | |
Collapse
|
20
|
Tikhonov AN. pH-dependent regulation of electron transport and ATP synthesis in chloroplasts. PHOTOSYNTHESIS RESEARCH 2013; 116:511-34. [PMID: 23695653 DOI: 10.1007/s11120-013-9845-y] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 04/25/2013] [Indexed: 05/02/2023]
Abstract
This review is focused on pH-dependent mechanisms of regulation of photosynthetic electron transport and ATP synthesis in chloroplasts. The light-induced acidification of the thylakoid lumen is known to decelerate the plastoquinol oxidation by the cytochrome b 6 f complex, thus impeding the electron flow between photosystem II and photosystem I. Acidification of the lumen also triggers the dissipation of excess energy in the light-harvesting antenna of photosystem II, thereby protecting the photosynthetic apparatus against a solar stress. After brief description of structural and functional organization of the chloroplast electron transport chain, our attention is focused on the nature of the rate-limiting step of electron transfer between photosystem II and photosystem I. In the context of pH-dependent mechanism of photosynthetic control in chloroplasts, the mechanisms of plastoquinol oxidation by the cytochrome b 6 f complex have been considered. The light-induced alkalization of stroma is another factor of pH-dependent regulation of electron transport in chloroplasts. Alkalization of stroma induces activation of the Bassham-Benson-Calvin cycle reactions, thereby promoting efflux of electrons from photosystem I to NADP(+). The mechanisms of the light-induced activation of ATP synthase are briefly considered.
Collapse
Affiliation(s)
- Alexander N Tikhonov
- Department of Biophysics, Faculty of Physics, M. V. Lomonosov, Moscow State University, Moscow, Russia,
| |
Collapse
|
21
|
Bisetto E, Comelli M, Salzano AM, Picotti P, Scaloni A, Lippe G, Mavelli I. Proteomic analysis of F1F0-ATP synthase super-assembly in mitochondria of cardiomyoblasts undergoing differentiation to the cardiac lineage. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:807-16. [PMID: 23587863 DOI: 10.1016/j.bbabio.2013.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/28/2013] [Accepted: 04/05/2013] [Indexed: 02/06/2023]
Abstract
Mitochondria are essential organelles with multiple functions, especially in energy metabolism. An increasing number of data highlighted their role for cellular differentiation processes. We investigated differences in ATP synthase supra-molecular organization occurring in H9c2 cardiomyoblasts in the course of cardiac-like differentiation, along with ATP synthase biogenesis and maturation of mitochondrial cristae morphology. Using BN-PAGE analysis combined with one-step mild detergent extraction from mitochondria, a significant increase in dimer/monomer ratio was observed, indicating a distinct rise in the stability of the enzyme super-assembly. Remarkably, sub-stoichiometric mean values for ATP synthase subunit e were determined in both parental and cardiac-like H9c2 by an MS-based quantitative proteomics approach. This indicates a similar high proportion of complex molecules lacking subunit e in both cell types, and suggests a minor contribution of this component in the observed changes. 2D BN-PAGE/immunoblotting analysis and MS/MS analysis on single BN-PAGE band showed that the amount of inhibitor protein IF1 bound within the ATP synthase complexes increased in cardiac-like H9c2 and appeared greater in the dimer. In concomitance, a consistent improvement of enzyme activity, measured as both ATP synthesis and ATP hydrolysis rate, was observed, despite the increase of bound IF1 evocative of a greater inhibitory effect on the enzyme ATPase activity. The results suggest i) a role for IF1 in promoting dimer stabilization and super-assembly in H9c2 with physiological IF1 expression levels, likely unveiled by the fact that the contacts through accessory subunit e appear to be partially destabilized, ii) a link between dimer stabilization and enzyme activation.
Collapse
Affiliation(s)
- Elena Bisetto
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Reversible cysteine oxidative post-translational modifications (Ox-PTMs) represent an important mechanism to regulate protein structure and function. In mitochondria, redox reactions can modulate components of the electron transport chain (ETC), the F(1)F(0)-ATP synthase complex, and other matrix proteins/enzymes. Emerging evidence has linked Ox-PTMs to mitochondrial dysfunction and heart failure, highlighting some potential therapeutic avenues. Ox-PTMs can modify a variety of amino acid residues, including cysteine, and have the potential to modulate the function of a large number of proteins. Among this group, there is a selected subset of amino acid residues that can function as redox switches. These unique sites are proposed to monitor the cell's oxidative balance through their response to the various Ox-PTMs. In this review, the role of Ox-PTMs in the regulation of the F(1)F(0)-ATP synthase complex is discussed in the context of heart failure and its possible clinical treatment.
Collapse
Affiliation(s)
- Sheng-Bing Wang
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21224
| | - Christopher I. Murray
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD 21224
| | - Heaseung S. Chung
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD 21224
| | - Jennifer E. Van Eyk
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21224
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD 21224
| |
Collapse
|
23
|
Nesci S, Ventrella V, Trombetti F, Pirini M, Pagliarani A. Tri‐ n‐butyltin binding to a low‐affinity site decreases the F 1F O‐ATPase sensitivity to oligomycin in mussel mitochondria. Appl Organomet Chem 2012; 26:593-599. [DOI: 10.1002/aoc.2904] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In mussel digestive gland mitochondria the environmental pollutant tri‐n‐butyltin (TBT), other than strongly inhibiting ATPase activity at <1.0 μ m, at ≥1.0 μ m concentration was previously found to desensitize F1FO‐ATPase to the antibiotic oligomycin. While F1FO‐ATPase inhibition is widely known as one of the main mitochondrial damages caused by TBT, the enzyme's desensitization to oligomycin was quite unexpected. The possible mechanisms involved are here stepwise approached, aiming at enlightening the molecular mechanism(s) of TBT toxicity and the still poorly investigated oligomycin interaction with FO. The findings strongly suggest that the oligomycin desensitization directly stems from the covalent binding of TBT to monothiols of the F1FO‐ATPase. This binding implies sulfur oxidation, irrespective of the possible formation of radical species in mitochondria, a mechanism which does not seem to be involved here. It is hypothesized that TBT interacts with the enzyme complex in at least two sites distinguished by different affinities: TBT binding to the high‐affinity site would lead to ATPase inhibition, while TBT binding to monothiols in the low‐affinity site could mirror the decrease in F1FO‐ATPase oligomycin sensitivity at ≥1.0 μ m TBT. Experiments carried out on inside‐out submitochondrial particles hint that TBT binding destabilizes the oligomycin‐blocked FO conformation, allowing proton flux recovery within FO, without uncoupling the catalytic function from proton channeling. Copyright © 2012 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences University of Bologna 40064 Ozzano Emilia Bologna Italy
| | - Vittoria Ventrella
- Department of Veterinary Medical Sciences University of Bologna 40064 Ozzano Emilia Bologna Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences University of Bologna 40064 Ozzano Emilia Bologna Italy
| | - Maurizio Pirini
- Department of Veterinary Medical Sciences University of Bologna 40064 Ozzano Emilia Bologna Italy
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences University of Bologna 40064 Ozzano Emilia Bologna Italy
| |
Collapse
|
24
|
Uner NE, Nishikawa Y, Okuno D, Nakano M, Yokoyama K, Noji H. Single-molecule analysis of inhibitory pausing states of V1-ATPase. J Biol Chem 2012; 287:28327-35. [PMID: 22736762 DOI: 10.1074/jbc.m112.381194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
V(1)-ATPase, the hydrophilic V-ATPase domain, is a rotary motor fueled by ATP hydrolysis. Here, we found that Thermus thermophilus V(1)-ATPase shows two types of inhibitory pauses interrupting continuous rotation: a short pause (SP, 4.2 s) that occurred frequently during rotation, and a long inhibitory pause (LP, >30 min) that terminated all active rotations. Both pauses occurred at the same angle for ATP binding and hydrolysis. Kinetic analysis revealed that the time constants of inactivation into and activation from the SP were too short to represent biochemically predicted ADP inhibition, suggesting that SP is a newly identified inhibitory state of V(1)-ATPase. The time constant of inactivation into LP was 17 min, consistent with one of the two time constants governing the inactivation process observed in bulk ATPase assay. When forcibly rotated in the forward direction, V(1) in LP resumed active rotation. Solution ADP suppressed the probability of mechanical activation, suggesting that mechanical rotation enhanced inhibitory ADP release. These features were highly consistent with mechanical activation of ADP-inhibited F(1), suggesting that LP represents the ADP-inhibited state of V(1)-ATPase. Mechanical activation largely depended on the direction and angular displacement of forced rotation, implying that V(1)-ATPase rotation modulates the off rate of ADP.
Collapse
Affiliation(s)
- Naciye Esma Uner
- Department of Biotechnology, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Chinopoulos C, Adam-Vizi V. Modulation of the mitochondrial permeability transition by cyclophilin D: moving closer to F(0)-F(1) ATP synthase? Mitochondrion 2012; 12:41-5. [PMID: 21586346 DOI: 10.1016/j.mito.2011.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/21/2011] [Accepted: 04/29/2011] [Indexed: 01/08/2023]
Abstract
Cyclophilin D was recently shown to mask an inhibitory site of the mitochondrial permeability transition pore (PTP) for phosphate, and to constitutively bind F(0)-F(1) ATP synthase resulting in the slowing of ATP synthesis and hydrolysis rates, thus regulating matrix adenine nucleotide levels. Here we review the striking similarities of the factors affecting the threshold for PTP induction, to those affecting binding of phosphate to formerly proposed sides on F(1)-ATPase affecting ATP hydrolytic activity, including critical arginine residues, matrix pH, [Mg(2+)], adenine nucleotides and proton motive force. Based on these similarities, we scrutinize the hypothesis that in depolarized mitochondria exhibiting reversal of F(0)-F(1) ATP synthase operation, the genetic ablation of cyclophilin D or its inhibition by cyclosporin A results in accelerated proton pumping by ATP hydrolysis, opposing a further decrease in membrane potential and promoting high matrix phosphate levels, both negatively affecting the probability of PTP opening.
Collapse
Affiliation(s)
- Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest 1094, Hungary
| | | |
Collapse
|
26
|
Haagsma AC, Podasca I, Koul A, Andries K, Guillemont J, Lill H, Bald D. Probing the interaction of the diarylquinoline TMC207 with its target mycobacterial ATP synthase. PLoS One 2011; 6:e23575. [PMID: 21858172 PMCID: PMC3157398 DOI: 10.1371/journal.pone.0023575] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 07/20/2011] [Indexed: 11/18/2022] Open
Abstract
Infections with Mycobacterium tuberculosis are substantially increasing on a worldwide scale and new antibiotics are urgently needed to combat concomitantly emerging drug-resistant mycobacterial strains. The diarylquinoline TMC207 is a highly promising drug candidate for treatment of tuberculosis. This compound kills M. tuberculosis by binding to a new target, mycobacterial ATP synthase. In this study we used biochemical assays and binding studies to characterize the interaction between TMC207 and ATP synthase. We show that TMC207 acts independent of the proton motive force and does not compete with protons for a common binding site. The drug is active on mycobacterial ATP synthesis at neutral and acidic pH with no significant change in affinity between pH 5.25 and pH 7.5, indicating that the protonated form of TMC207 is the active drug entity. The interaction of TMC207 with ATP synthase can be explained by a one-site binding mechanism, the drug molecule thus binds to a defined binding site on ATP synthase. TMC207 affinity for its target decreases with increasing ionic strength, suggesting that electrostatic forces play a significant role in drug binding. Our results are consistent with previous docking studies and provide experimental support for a predicted function of TMC207 in mimicking key residues in the proton transfer chain and blocking rotary movement of subunit c during catalysis. Furthermore, the high affinity of TMC207 at low proton motive force and low pH values may in part explain the exceptional ability of this compound to efficiently kill mycobacteria in different microenvironments.
Collapse
Affiliation(s)
- Anna C. Haagsma
- Department of Molecular Cell Biology, Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Amsterdam, The Netherlands
| | - Ioana Podasca
- Department of Molecular Cell Biology, Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Amsterdam, The Netherlands
| | - Anil Koul
- Department of Antimicrobial Research, Tibotec NV, Johnson & Johnson Pharmaceutical Research and Development, Beerse, Belgium
| | - Koen Andries
- Department of Antimicrobial Research, Tibotec NV, Johnson & Johnson Pharmaceutical Research and Development, Beerse, Belgium
| | - Jerome Guillemont
- Department of Medicinal Chemistry, Janssen Research & Development, Johnson & Johnson, Val de Reuil, France
| | - Holger Lill
- Department of Molecular Cell Biology, Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Amsterdam, The Netherlands
| | - Dirk Bald
- Department of Molecular Cell Biology, Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
27
|
Suzuki T, Wakabayashi C, Tanaka K, Feniouk BA, Yoshida M. Modulation of nucleotide specificity of thermophilic F(o)F(1)-ATP Synthase by epsilon-subunit. J Biol Chem 2011; 286:16807-13. [PMID: 21454506 PMCID: PMC3089524 DOI: 10.1074/jbc.m110.209965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/18/2011] [Indexed: 11/06/2022] Open
Abstract
The C-terminal two α-helices of the ε-subunit of thermophilic Bacillus F(o)F(1)-ATP synthase (TF(o)F(1)) adopt two conformations: an extended long arm ("up-state") and a retracted hairpin ("down-state"). As ATP becomes poor, ε changes the conformation from the down-state to the up-state and suppresses further ATP hydrolysis. Using TF(o)F(1) expressed in Escherichia coli, we compared TF(o)F(1) with up- and down-state ε in the NTP (ATP, GTP, UTP, and CTP) synthesis reactions. TF(o)F(1) with the up-state ε was achieved by inclusion of hexokinase in the assay and TF(o)F(1) with the down-state ε was represented by εΔc-TF(o)F(1), in which ε lacks C-terminal helices and hence cannot adopt the up-state under any conditions. The results indicate that TF(o)F(1) with the down-state ε synthesizes GTP at the same rate of ATP, whereas TF(o)F(1) with the up-state ε synthesizes GTP at a half-rate. Though rates are slow, TF(o)F(1) with the down-state ε even catalyzes UTP and CTP synthesis. Authentic TF(o)F(1) from Bacillus cells also synthesizes ATP and GTP at the same rate in the presence of adenosine 5'-(β,γ-imino)triphosphate (AMP-PNP), an ATP analogue that has been known to stabilize the down-state. NTP hydrolysis and NTP-driven proton pumping activity of εΔc-TF(o)F(1) suggests similar modulation of nucleotide specificity in NTP hydrolysis. Thus, depending on its conformation, ε-subunit modulates substrate specificity of TF(o)F(1).
Collapse
Affiliation(s)
- Toshiharu Suzuki
- From the ATP Synthesis Regulation Project, International Research Project (ICORP), Japan Science and Technology Corporation, Aomi 2-41, Tokyo 135-0064 and
| | - Chiaki Wakabayashi
- From the ATP Synthesis Regulation Project, International Research Project (ICORP), Japan Science and Technology Corporation, Aomi 2-41, Tokyo 135-0064 and
| | - Kazumi Tanaka
- From the ATP Synthesis Regulation Project, International Research Project (ICORP), Japan Science and Technology Corporation, Aomi 2-41, Tokyo 135-0064 and
| | - Boris A. Feniouk
- From the ATP Synthesis Regulation Project, International Research Project (ICORP), Japan Science and Technology Corporation, Aomi 2-41, Tokyo 135-0064 and
| | - Masasuke Yoshida
- From the ATP Synthesis Regulation Project, International Research Project (ICORP), Japan Science and Technology Corporation, Aomi 2-41, Tokyo 135-0064 and
- the Department of Molecular Bioscience, Kyoto Sangyo University, Kamigamo, Kyoto 603-8555, Japan
| |
Collapse
|
28
|
Chinopoulos C. The "B space" of mitochondrial phosphorylation. J Neurosci Res 2011; 89:1897-904. [PMID: 21541983 DOI: 10.1002/jnr.22659] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/09/2011] [Accepted: 03/10/2011] [Indexed: 11/07/2022]
Abstract
It was recently shown that, in progressively depolarizing mitochondria, the F(0) -F(1) ATP synthase and the adenine nucleotide translocase (ANT) may change directionality independently from each other (Chinopoulos et al. [2010] FASEB J. 24:2405). When the membrane potentials at which these two molecular entities reverse directionality, termed reversal potential (Erev), are plotted as a function of matrix ATP/ADP ratio, an area of the plot is bracketed by the Erev_ATPase and the Erev_ANT, which we call "B space". Both reversal potentials are dynamic, in that they depend on the fluctuating values of the participating reactants; however, Erev_ATPase is almost always more negative than Erev_ANT. Here we review the conditions that define the boundaries of the "B space". Emphasis is placed on the role of matrix substrate-level phosphorylation, because during metabolic compromise this mechanism could maintain mitochondrial membrane potential and prevent the influx of cytosolic ATP destined for hydrolysis by the reversed F(0) -F(1) ATP synthase.
Collapse
|
29
|
Mitochondrial consumption of cytosolic ATP: not so fast. FEBS Lett 2011; 585:1255-9. [PMID: 21486564 DOI: 10.1016/j.febslet.2011.04.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 04/01/2011] [Accepted: 04/01/2011] [Indexed: 11/23/2022]
Abstract
In various pathologic circumstances depolarized mitochondria are thought to precipitate cell death by avidly consuming cytosolic ATP. However, for as long as the inner mitochondrial membrane remains intact the reversal potentials of the adenine nucleotide translocase (ANT) and that of F(0)-F(1) ATP synthase are strategically positioned so that they oppose import of cytosolic ATP into the matrix of respiration-impaired mitochondria. This arrangement also seems to protect against a hysteretic consumption of cytosolic ATP accumulating in the mitochondrial matrix, in view of the depolarization caused by inhibition of F(0)-F(1) ATP synthase by the endogenous protein IF1, yielding fast ANT reversal rates.
Collapse
|
30
|
The regulatory C-terminal domain of subunit ε of F₀F₁ ATP synthase is dispensable for growth and survival of Escherichia coli. J Bacteriol 2011; 193:2046-52. [PMID: 21335453 DOI: 10.1128/jb.01422-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The C-terminal domain of subunit ε of the bacterial F₀F₁ ATP synthase is reported to be an intrinsic inhibitor of ATP synthesis/hydrolysis activity in vitro, preventing wasteful hydrolysis of ATP under low-energy conditions. Mutants defective in this regulatory domain exhibited no significant difference in growth rate, molar growth yield, membrane potential, or intracellular ATP concentration under a wide range of growth conditions and stressors compared to wild-type cells, suggesting this inhibitory domain is dispensable for growth and survival of Escherichia coli.
Collapse
|
31
|
Couoh-Cardel SJ, Uribe-Carvajal S, Wilkens S, García-Trejo JJ. Structure of dimeric F1F0-ATP synthase. J Biol Chem 2010; 285:36447-55. [PMID: 20833715 DOI: 10.1074/jbc.m110.144907] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The structure of the dimeric ATP synthase from yeast mitochondria was analyzed by transmission electron microscopy and single particle image analysis. In addition to the previously reported side views of the dimer, top view and intermediate projections served to resolve the arrangement of the rotary c(10) ring and the other stator subunits at the F(0)-F(0) dimeric interface. A three-dimensional reconstruction of the complex was calculated from a data set of 9960 molecular images at a resolution of 27 Å. The structural model of the dimeric ATP synthase shows the two monomers arranged at an angle of ∼45°, consistent with our earlier analysis of the ATP synthase from bovine heart mitochondria (Minauro-Sanmiguel, F., Wilkens, S., and Garcia, J. J. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 12356-12358). In the ATP synthase dimer, the two peripheral stalks are located near the F(1)-F(1) interface but are turned away from each other so that they are not in contact. Based on the three-dimensional reconstruction, a model of how dimeric ATP synthase assembles to form the higher order oligomeric structures that are required for mitochondrial cristae biogenesis is discussed.
Collapse
Affiliation(s)
- Sergio J Couoh-Cardel
- Department of Biology, Chemistry Faculty, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | | | | | | |
Collapse
|
32
|
Abstract
F(o)F(1)-ATPase is an amazing molecular rotary motor at the nanoscale. Single molecule technologies have contributed much to the understanding of the motor. For example, fluorescence imaging and spectroscopy revealed the physical rotation of isolated F(1) and F(o), or F(o)F(1) holoenzyme. Magnetic tweezers were employed to manipulate the ATP synthesis/hydrolysis in F(1), and proton translation in F(o). Here, we briefly review our recent works including a systematic kinetics study of the holoenzyme, the mechanochemical coupling mechanism, reconstituting the delta-free F(o)F(1)-ATPase, direct observation of F(o) rotation at single molecule level and activity regulation through external links on the stator.
Collapse
Affiliation(s)
- Yao-Gen Shu
- Institute of Theoretical Physics, CAS, Beijing, 100190, China.
| | | | | |
Collapse
|
33
|
F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1362-77. [PMID: 20193659 DOI: 10.1016/j.bbabio.2010.02.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 12/14/2022]
Abstract
This review focuses on the ATP synthases of alkaliphilic bacteria and, in particular, those that successfully overcome the bioenergetic challenges of achieving robust H+-coupled ATP synthesis at external pH values>10. At such pH values the protonmotive force, which is posited to provide the energetic driving force for ATP synthesis, is too low to account for the ATP synthesis observed. The protonmotive force is lowered at a very high pH by the need to maintain a cytoplasmic pH well below the pH outside, which results in an energetically adverse pH gradient. Several anticipated solutions to this bioenergetic conundrum have been ruled out. Although the transmembrane sodium motive force is high under alkaline conditions, respiratory alkaliphilic bacteria do not use Na+- instead of H+-coupled ATP synthases. Nor do they offset the adverse pH gradient with a compensatory increase in the transmembrane electrical potential component of the protonmotive force. Moreover, studies of ATP synthase rotors indicate that alkaliphiles cannot fully resolve the energetic problem by using an ATP synthase with a large number of c-subunits in the synthase rotor ring. Increased attention now focuses on delocalized gradients near the membrane surface and H+ transfers to ATP synthases via membrane-associated microcircuits between the H+ pumping complexes and synthases. Microcircuits likely depend upon proximity of pumps and synthases, specific membrane properties and specific adaptations of the participating enzyme complexes. ATP synthesis in alkaliphiles depends upon alkaliphile-specific adaptations of the ATP synthase and there is also evidence for alkaliphile-specific adaptations of respiratory chain components.
Collapse
|
34
|
Saita EI, Iino R, Suzuki T, Feniouk BA, Kinosita K, Yoshida M. Activation and stiffness of the inhibited states of F1-ATPase probed by single-molecule manipulation. J Biol Chem 2010; 285:11411-7. [PMID: 20154086 DOI: 10.1074/jbc.m109.099143] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
F(1)-ATPase (F(1)), a soluble portion of F(o)F(1)-ATP synthase (F(o)F(1)), is an ATP-driven motor in which gammaepsilon subunits rotate in the alpha(3)beta(3) cylinder. Activity of F(1) and F(o)F(1) from Bacillus PS3 is attenuated by the epsilon subunit in an inhibitory extended form. In this study we observed ATP-dependent transition of epsilon in single F(1) molecules from extended form to hairpin form by fluorescence resonance energy transfer. The results justify the previous bulk experiments and ensure that fraction of F(1) with hairpin epsilon directly determines the fraction of active F(1) at any ATP concentration. Next, mechanical activation and stiffness of epsilon-inhibited F(1) were examined by the forced rotation of magnetic beads attached to gamma. Compared with ADP inhibition, which is another manner of inhibition, rotation by a larger angle was required for the activation from epsilon inhibition when the beads were forced to rotate to ATP hydrolysis direction, and more torque was required to reach the same rotation angle when beads were forced to rotate to ATP synthesis direction. The results imply that if F(o)F(1) is resting in the epsilon-inhibited state, F(o) motor must transmit to gamma a torque larger than expected from thermodynamic equilibrium to initiate ATP synthesis.
Collapse
Affiliation(s)
- Ei-ichiro Saita
- ICORP ATP Synthesis Regulation Project, Japan Science and Technology Corporation, Aomi 2-3-6, Tokyo 135-0064, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Kagawa Y. ATP synthase: from single molecule to human bioenergetics. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:667-93. [PMID: 20689227 PMCID: PMC3066536 DOI: 10.2183/pjab.86.667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 04/30/2010] [Indexed: 05/20/2023]
Abstract
ATP synthase (F(o)F(1)) consists of an ATP-driven motor (F(1)) and a H(+)-driven motor (F(o)), which rotate in opposite directions. F(o)F(1) reconstituted into a lipid membrane is capable of ATP synthesis driven by H(+) flux. As the basic structures of F(1) (alpha(3)beta(3)gammadeltaepsilon) and F(o) (ab(2)c(10)) are ubiquitous, stable thermophilic F(o)F(1) (TF(o)F(1)) has been used to elucidate molecular mechanisms, while human F(1)F(o) (HF(1)F(o)) has been used to study biomedical significance. Among F(1)s, only thermophilic F(1) (TF(1)) can be analyzed simultaneously by reconstitution, crystallography, mutagenesis and nanotechnology for torque-driven ATP synthesis using elastic coupling mechanisms. In contrast to the single operon of TF(o)F(1), HF(o)F(1) is encoded by both nuclear DNA with introns and mitochondrial DNA. The regulatory mechanism, tissue specificity and physiopathology of HF(o)F(1) were elucidated by proteomics, RNA interference, cytoplasts and transgenic mice. The ATP synthesized daily by HF(o)F(1) is in the order of tens of kilograms, and is primarily controlled by the brain in response to fluctuations in activity.
Collapse
|
36
|
Morales-Ríos E, de la Rosa-Morales F, Mendoza-Hernández G, Rodríguez-Zavala JS, Celis H, Zarco-Zavala M, García-Trejo JJ. A novel 11-kDa inhibitory subunit in the F1FO ATP synthase of Paracoccus denitrificans and related alpha-proteobacteria. FASEB J 2009; 24:599-608. [PMID: 19783785 DOI: 10.1096/fj.09-137356] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The F(1)F(O) and F(1)-ATPase complexes of Paracoccus denitrificans were isolated for the first time by ion exchange, gel filtration, and density gradient centrifugation into functional native preparations. The liposome-reconstituted holoenzyme preserves its tight coupling between F(1) and F(O) sectors, as evidenced by its high sensitivity to the F(O) inhibitors venturicidin and diciclohexylcarbodiimide. Comparison and N-terminal sequencing of the band profile in SDS-PAGE of the F(1) and F(1)F(O) preparations showed a novel 11-kDa protein in addition to the 5 canonical alpha, beta, gamma, delta, and epsilon subunits present in all known F(1)-ATPase complexes. BN-PAGE followed by 2D-SDS-PAGE confirmed the presence of this 11-kDa protein bound to the native F(1)F(O)-ATP synthase of P. denitrificans, as it was observed after being isolated. The recombinant 11 kDa and epsilon subunits of P. denitrificans were cloned, overexpressed, isolated, and reconstituted in particulate F(1)F(O) and soluble F(1)-ATPase complexes. The 11-kDa protein, but not the epsilon subunit, inhibited the F(1)F(O) and F(1)-ATPase activities of P. denitrificans. The 11-kDa protein was also found in Rhodobacter sphaeroides associated to its native F(1)F(O)-ATPase. Taken together, the data unveil a novel inhibitory mechanism exerted by this 11-kDa protein on the F(1)F(O)-ATPase nanomotor of P. denitrificans and closely related alpha-proteobacteria.
Collapse
Affiliation(s)
- Edgar Morales-Ríos
- Biology Department, Chemistry Faculty, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
37
|
Chinopoulos C, Adam-Vizi V. Mitochondria as ATP consumers in cellular pathology. Biochim Biophys Acta Mol Basis Dis 2009; 1802:221-7. [PMID: 19715757 DOI: 10.1016/j.bbadis.2009.08.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 07/17/2009] [Accepted: 08/17/2009] [Indexed: 12/21/2022]
Abstract
ATP provided by oxidative phosphorylation supports highly complex and energetically expensive cellular processes. Yet, in several pathological settings, mitochondria could revert to ATP consumption, aggravating an existing cellular pathology. Here we review (i) the pathological conditions leading to ATP hydrolysis by the reverse operation of the mitochondrial F(o)F(1)-ATPase, (ii) molecular and thermodynamic factors influencing the directionality of the F(o)F(1)-ATPase, (iii) the role of the adenine nucleotide translocase as the intermediary adenine nucleotide flux pathway between the cytosol and the mitochondrial matrix when mitochondria become ATP consumers, (iv) the role of the permeability transition pore in bypassing the ANT, thereby allowing the flux of ATP directly to the hydrolyzing F(o)F(1)-ATPase, (v) the impact of the permeability transition pore on glycolytic ATP production, and (vi) endogenous and exogenous interventions for limiting ATP hydrolysis by the mitochondrial F(o)F(1)-ATPase.
Collapse
Affiliation(s)
- Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Neurobiochemical Group, Hungarian Academy of Sciences, Budapest, Hungary
| | | |
Collapse
|
38
|
von Ballmoos C, Wiedenmann A, Dimroth P. Essentials for ATP synthesis by F1F0 ATP synthases. Annu Rev Biochem 2009; 78:649-72. [PMID: 19489730 DOI: 10.1146/annurev.biochem.78.081307.104803] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The majority of cellular energy in the form of adenosine triphosphate (ATP) is synthesized by the ubiquitous F(1)F(0) ATP synthase. Power for ATP synthesis derives from an electrochemical proton (or Na(+)) gradient, which drives rotation of membranous F(0) motor components. Efficient rotation not only requires a significant driving force (DeltamuH(+)), consisting of membrane potential (Deltapsi) and proton concentration gradient (DeltapH), but also a high proton concentration at the source P side. In vivo this is maintained by dynamic proton movements across and along the surface of the membrane. The torque-generating unit consists of the interface of the rotating c ring and the stator a subunit. Ion translocation through this unit involves a sophisticated interplay between the c-ring binding sites, the stator arginine, and the coupling ions on both sides of the membrane. c-ring rotation is transmitted to the eccentric shaft gamma-subunit to elicit conformational changes in the catalytic sites of F(1), leading to ATP synthesis.
Collapse
Affiliation(s)
- Christoph von Ballmoos
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden.
| | | | | |
Collapse
|
39
|
Kane LA, Van Eyk JE. Post-translational modifications of ATP synthase in the heart: biology and function. J Bioenerg Biomembr 2009; 41:145-50. [PMID: 19399597 PMCID: PMC2905846 DOI: 10.1007/s10863-009-9218-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ATP synthase complex is a critical enzyme in the energetic pathways of cells because it is the enzyme complex that produces the majority of cellular ATP. It has been shown to be involved in several cardiac phenotypes including heart failure and preconditioning, a cellular protective mechanism. Understanding the regulation of this enzyme is important in understanding the mechanisms behind these important phenomena. Recently there have been several post-translational modifications (PTM) reported for various subunits of this enzyme complex, opening up the possibility of differential regulation by these PTMs. Here we discuss the known PTMs in the heart and other mammalian tissues and their implication to function and regulation of the ATP synthase.
Collapse
Affiliation(s)
- Lesley A Kane
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
40
|
Genome-wide screen in Francisella novicida for genes required for pulmonary and systemic infection in mice. Infect Immun 2008; 77:232-44. [PMID: 18955478 DOI: 10.1128/iai.00978-08] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Francisella tularensis is a gram-negative, highly infectious, aerosolizable facultative intracellular pathogen that causes the potentially life-threatening disease tularemia. To date there is no approved vaccine available, and little is known about the molecular mechanisms important for infection, survival, and dissemination at different times of infection. We report the first whole-genome screen using an inhalation mouse model to monitor infection in the lung and dissemination to the liver and spleen. We queried a comprehensive library of 2,998 sequence-defined transposon insertion mutants in Francisella novicida strain U112 using a microarray-based negative-selection screen. We were able to track the behavior of 1,029 annotated genes, equivalent to a detection rate of 75% and corresponding to approximately 57% of the entire F. novicida genome. As expected, most transposon mutants retained the ability to colonize, but 125 candidate virulence genes (12%) could not be detected in at least one of the three organs. They fell into a variety of functional categories, with one-third having no annotated function and a statistically significant enrichment of genes involved in transcription. Based on the observation that behavior during complex pool infections correlated with the degree of attenuation during single-strain infection we identified nine genes expected to strongly contribute to infection. These included two genes, those for ATP synthase C (FTN_1645) and thioredoxin (FTN_1415), that when mutated allowed increased host survival and conferred protection in vaccination experiments.
Collapse
|
41
|
García-Trejo JJ, Morales-Ríos E. Regulation of the F1F0-ATP synthase rotary nanomotor in its monomeric-bacterial and dimeric-mitochondrial forms. J Biol Phys 2008; 34:197-212. [PMID: 19669503 DOI: 10.1007/s10867-008-9114-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 09/08/2008] [Indexed: 12/21/2022] Open
Abstract
The F(1)F(0)-adenosine triphosphate (ATP) synthase rotational motor synthesizes most of the ATP required for living from adenosine diphosphate, Pi, and a proton electrochemical gradient across energy-transducing membranes of bacteria, chloroplasts, and mitochondria. However, as a reversible nanomotor, it also hydrolyzes ATP during de-energized conditions in all energy-transducing systems. Thus, different subunits and mechanisms have emerged in nature to control the intrinsic rotation of the enzyme to favor the ATP synthase activity over its opposite and commonly wasteful ATPase turnover. Recent advances in the structural analysis of the bacterial and mitochondrial ATP synthases are summarized to review the distribution and mechanism of the subunits that are part of the central rotor and regulate its gyration. In eubacteria, the epsilon subunit works as a ratchet to favor the rotation of the central stalk in the ATP synthase direction by extending and contracting two alpha-helixes of its C-terminal side and also by binding ATP with low affinity in thermophilic bacteria. On the other hand, in bovine heart mitochondria, the so-called inhibitor protein (IF(1)) interferes with the intrinsic rotational mechanism of the central gamma subunit and with the opening and closing of the catalytic beta-subunits to inhibit its ATPase activity. Besides its inhibitory role, the IF(1) protein also promotes the dimerization of the bovine and rat mitochondrial enzymes, albeit it is not essential for dimerization of the yeast F(1)F(0) mitochondrial complex. High-resolution electron microscopy of the dimeric enzyme in its bovine and yeast forms shows a conical shape that is compatible with the role of the ATP synthase dimer in the formation of tubular the cristae membrane of mitochondria after further oligomerization. Dimerization of the mitochondrial ATP synthase diminishes the rotational drag of the central rotor that would decrease the coupling efficiency between rotation of the central stalk and ATP synthesis taking place at the F(1) portion. In addition, F(1)F(0) dimerization and its further oligomerization also increase the stability of the enzyme to natural or experimentally induced destabilizing conditions.
Collapse
Affiliation(s)
- José J García-Trejo
- Facultad de Química, Departamento de Biología, Lab. F-117, Universidad Nacional Autónoma de México, México, D.F., 04510, México.
| | | |
Collapse
|
42
|
Nakano M, Imamura H, Toei M, Tamakoshi M, Yoshida M, Yokoyama K. ATP hydrolysis and synthesis of a rotary motor V-ATPase from Thermus thermophilus. J Biol Chem 2008; 283:20789-96. [PMID: 18492667 DOI: 10.1074/jbc.m801276200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar-type H(+)-ATPase (V-ATPase) catalyzes ATP synthesis and hydrolysis coupled with proton translocation across membranes via a rotary motor mechanism. Here we report biochemical and biophysical catalytic properties of V-ATPase from Thermus thermophilus. ATP hydrolysis of V-ATPase was severely inhibited by entrapment of Mg-ADP in the catalytic site. In contrast, the enzyme was very active for ATP synthesis (approximately 70 s(-1)) with the K(m) values for ADP and phosphate being 4.7 +/- 0.5 and 460 +/- 30 microm, respectively. Single molecule observation showed V-ATPase rotated in a 120 degrees stepwise manner, and analysis of dwelling time allowed the binding rate constant k(on) for ATP to be estimated ( approximately 1.1 x 10(6) m(-1) s(-1)), which was much lower than the k(on) (= V(max)/K(m)) for ADP ( approximately 1.4 x 10(7) m(-1) s(-1)). The slower k(on)(ATP) than k(on)(ADP) and strong Mg-ADP inhibition may contribute to prevent wasteful consumption of ATP under in vivo conditions when the proton motive force collapses.
Collapse
Affiliation(s)
- Masahiro Nakano
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|