1
|
Yue QG, Zhou SH, Li B, Wu XT, Lin H, Zhu QL. Quaternary Noncentrosymmetric Rare-Earth Sulfides Ba 4RE 2Cd 3S 10 (RE = Sm, Gd, or Tb): A Joint Experimental and Theoretical Investigation. Inorg Chem 2022; 61:1797-1804. [PMID: 35015955 DOI: 10.1021/acs.inorgchem.1c03820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multinary rare-earth chalcogenides with d-block transition metals have attracted considerable attention owing to their intriguing structural architectures and promising practical applications. In this work, three quaternary rare-earth sulfides, Ba4RE2Cd3S10 (RE = Sm, Gd, or Tb), have been obtained by the high-temperature solid-state method. These compounds are isostructural and belong to the noncentrosymmetric orthorhombic space group Cmc21 (No. 36). The basic structural unit contains unique two-dimensional anionic [RE2Cd3S10]8- layers, which are separated by Ba2+ cations. Remarkably, Ba4Sm2Cd3S10 exhibits a high second-harmonic-generation intensity (1.8 times that of AgGaS2) and a significantly higher laser-induced damage threshold (14.3 times that of AgGaS2), which is the first case possessing an infrared (IR) nonlinear optical (NLO) property in the quaternary AE/RE/TM/Q (AE = alkaline-earth metals; RE = rare-earth metals; TM = d-block transition metals; and Q = chalcogen) systems. Moreover, theoretical investigations of the structure-property relationship indicate that the combined action of various types of NLO-active units makes the main contribution to the SHG activity. This discovery may shed light on broadening the frontiers of IR-NLO materials.
Collapse
Affiliation(s)
- Qing-Gang Yue
- College of Chemistry, Fuzhou University, Fuzhou 350002, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Sheng-Hua Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingxuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, China
| | - Hua Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, China
| |
Collapse
|
2
|
Chen MM, Zhou SH, Wei W, Wu XT, Lin H, Zhu QL. AZn 4Ga 5Se 12 (A = K, Rb, or Cs): Infrared Nonlinear Optical Materials with Simultaneous Large Second Harmonic Generation Responses and High Laser-Induced Damage Thresholds. Inorg Chem 2021; 60:10038-10046. [PMID: 34134479 DOI: 10.1021/acs.inorgchem.1c01359] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the fact that nonlinear optical (NLO) crystals such as AgGaS2 and AgGaSe2 have been widely used in the infrared (IR) range due to their large second harmonic generation (SHG) coefficients and wide range of IR transparency windows, the small laser-induced damage threshold (LIDT) remains a great issue hindering their high-power applications. Herein, three noncentrosymmetric (NCS) chalcogenides AZn4Ga5Se12 (A = K, Rb, or Cs) are successfully obtained through an appropriate flux method after the extensive design and synthesis of the A/Zn/Ga/Q system. Single-crystal X-ray diffraction data demonstrate that they adopt trigonal space group R3 (No. 146) with three-dimensional diamond-like frameworks composed of [M9Se24] layers (M = Zn or Ga) stacking in the same direction and filled by charge-balancing A+ cations. Noticeably, they all exhibit strong powder SHG responses (2.8-3.7 × AgGaS2) and amazing LIDTs (19.2-23.4 × AgGaS2). In addition, theoretical calculations are performed to further determine the relationship between NCS structures and NLO properties. This work provides effective solutions for overcoming the trade-off between strong SHG and high LIDT in IR-NLO materials.
Collapse
Affiliation(s)
- Man-Man Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng-Hua Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbo Wei
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Hua Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
3
|
Abudurusuli A, Wu K, Li J, Yalikun A, Yang Z, Pan S. LiBa2MIIIQ4 (MIII = Al, Ga, In; Q = S, Se): A Series of Metal Chalcogenides with a Structural Transition. Inorg Chem 2019; 58:12859-12866. [DOI: 10.1021/acs.inorgchem.9b01810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ailijiang Abudurusuli
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, People’s Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Kui Wu
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, People’s Republic of China
| | - Junjie Li
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, People’s Republic of China
| | - Alimujiang Yalikun
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, People’s Republic of China
| | - Zhihua Yang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, People’s Republic of China
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, People’s Republic of China
| |
Collapse
|