2
|
Wei M, Han C, Zhou X, Tong T, Zhang J, Ji X, Zhang P, Zhang Y, Liu Y, Zhang X, Cai T, Xie C. Filamentous morphology engineering of bacteria by iron metabolism modulation through MagR expression. Synth Syst Biotechnol 2024; 9:522-530. [PMID: 38645975 PMCID: PMC11031723 DOI: 10.1016/j.synbio.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/16/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024] Open
Abstract
The morphology is the consequence of evolution and adaptation. Escherichia coli is rod-shaped bacillus with regular dimension of about 1.5 μm long and 0.5 μm wide. Many shape-related genes have been identified and used in morphology engineering of this bacteria. However, little is known about if specific metabolism and metal irons could modulate bacteria morphology. Here in this study, we discovered filamentous shape change of E. coli cells overexpressing pigeon MagR, a putative magnetoreceptor and extremely conserved iron-sulfur protein. Comparative transcriptomic analysis strongly suggested that the iron metabolism change and iron accumulation due to the overproduction of MagR was the key to the morphological change. This model was further validated, and filamentous morphological change was also achieved by supplement E. coli cells with iron in culture medium or by increase the iron uptake genes such as entB and fepA. Our study extended our understanding of morphology regulation of bacteria, and may also serves as a prototype of morphology engineering by modulating the iron metabolism.
Collapse
Affiliation(s)
- Mengke Wei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230039, China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui, 230031, China
| | - Chenyang Han
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230039, China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui, 230031, China
| | - Xiujuan Zhou
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui, 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, 230036, China
| | - Tianyang Tong
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui, 230031, China
- Department of Anatomy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Jing Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui, 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, 230036, China
| | - Xinmiao Ji
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui, 230031, China
| | - Peng Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui, 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, 230036, China
| | - Yanqi Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui, 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, 230036, China
| | - Yan Liu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui, 230031, China
- Department of Anatomy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xin Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230039, China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui, 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, 230036, China
| | - Tiantian Cai
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui, 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, 230036, China
- Institute of Quantum Sensing, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Can Xie
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui, 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, 230036, China
- Institute of Quantum Sensing, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
3
|
Apiche EA, Yee E, Damodaran AR, Bhagi-Damodaran A. Oxygen affinities of DosT and DosS sensor kinases with implications for hypoxia adaptation in Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582189. [PMID: 38464195 PMCID: PMC10925234 DOI: 10.1101/2024.02.26.582189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
DosT and DosS are heme-based kinases involved in sensing and signaling O2 tension in the microenvironment of Mycobacterium tuberculosis (Mtb). Under conditions of low O2, they activate >50 dormancy-related genes and play a pivotal role in the induction of dormancy and associated drug resistance during tuberculosis infection. In this work, we reexamine the O2 binding affinities of DosT and DosS to show that their equilibrium dissociation constants are 3.3±1 μM and 0.46±0.08 μM respectively, which are six to eight-fold stronger than what has been widely referred to in literature. Furthermore, stopped-flow kinetic studies reveal association and dissociation rate constants of 0.84 μM-1s-1 and 2.8 s-1, respectively for DosT, and 7.2 μM-1s-1 and 3.3 s-1, respectively for DosS. Remarkably, these tighter O2 binding constants correlate with distinct stages of hypoxia-induced non-replicating persistence in the Wayne model of Mtb. This knowledge opens doors to deconvoluting the intricate interplay between hypoxia adaptation stages and the signal transduction capabilities of these important heme-based O2 sensors.
Collapse
|
4
|
Ibrahim IH. Metalloproteins and metalloproteomics in health and disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:123-176. [PMID: 38960472 DOI: 10.1016/bs.apcsb.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Metalloproteins represents more than one third of human proteome, with huge variation in physiological functions and pathological implications, depending on the metal/metals involved and tissue context. Their functions range from catalysis, bioenergetics, redox, to DNA repair, cell proliferation, signaling, transport of vital elements, and immunity. The human metalloproteomic studies revealed that many families of metalloproteins along with individual metalloproteins are dysregulated under several clinical conditions. Also, several sorts of interaction between redox- active or redox- inert metalloproteins are observed in health and disease. Metalloproteins profiling shows distinct alterations in neurodegenerative diseases, cancer, inflammation, infection, diabetes mellitus, among other diseases. This makes metalloproteins -either individually or as families- a promising target for several therapeutic approaches. Inhibitors and activators of metalloenzymes, metal chelators, along with artificial metalloproteins could be versatile in diagnosis and treatment of several diseases, in addition to other biomedical and industrial applications.
Collapse
Affiliation(s)
- Iman Hassan Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
5
|
Larson GW, Windsor PK, Smithwick E, Shi K, Aihara H, Rama Damodaran A, Bhagi-Damodaran A. Understanding ATP Binding to DosS Catalytic Domain with a Short ATP-Lid. Biochemistry 2023; 62:3283-3292. [PMID: 37905955 PMCID: PMC11152246 DOI: 10.1021/acs.biochem.3c00306] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
DosS is a heme-containing histidine kinase that triggers dormancy transformation inMycobacterium tuberculosis. Sequence comparison of the catalytic ATP-binding (CA) domain of DosS to other well-studied histidine kinases reveals a short ATP-lid. This feature has been thought to block binding of ATP to DosS's CA domain in the absence of interactions with DosS's dimerization and histidine phospho-transfer (DHp) domain. Here, we use a combination of computational modeling, structural biology, and biophysical studies to re-examine ATP-binding modalities in DosS. We show that the closed-lid conformation observed in crystal structures of DosS CA is caused by the presence of Zn2+ in the ATP binding pocket that coordinates with Glu537 on the ATP-lid. Furthermore, circular dichroism studies and comparisons of DosS CA's crystal structure with its AlphaFold model and homologous DesK reveal that residues 503-507 that appear as a random coil in the Zn2+-coordinated crystal structure are in fact part of the N-box α helix needed for efficient ATP binding. Such random-coil transformation of an N-box α helix turn and the closed-lid conformation are both artifacts arising from large millimolar Zn2+ concentrations used in DosS CA crystallization buffers. In contrast, in the absence of Zn2+, the short ATP-lid of DosS CA has significant conformational flexibility and can effectively bind AMP-PNP (Kd = 53 ± 13 μM), a non-hydrolyzable ATP analog. Furthermore, the nucleotide affinity remains unchanged when CA is conjugated to the DHp domain (Kd = 51 ± 6 μM). In all, our findings reveal that the short ATP-lid of DosS CA does not hinder ATP binding and provide insights that extend to 2988 homologous bacterial proteins containing such ATP-lids.
Collapse
Affiliation(s)
- Grant W Larson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Peter K Windsor
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Elizabeth Smithwick
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Anoop Rama Damodaran
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ambika Bhagi-Damodaran
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|