1
|
Huang W, Shen B, Li X, Zhang T, Zhou X. Benefits of Combining Sonchus brachyotus DC. Extracts and Synbiotics in Alleviating Non-Alcoholic Fatty Liver Disease. Foods 2023; 12:3393. [PMID: 37761102 PMCID: PMC10530047 DOI: 10.3390/foods12183393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease, commonly abbreviated to NAFLD, is a pervasive ailment within the digestive system, exhibiting a rising prevalence, and impacting individuals at increasingly younger ages. Those afflicted by NAFLD face a heightened vulnerability to the onset of profound liver fibrosis, cardiovascular complications, and malignancies. Currently, NAFLD poses a significant threat to human health, and there is no approved therapeutic treatment for it. Recent studies have shown that synbiotics, which regulate intestinal microecology, can positively impact glucolipid metabolism, and improve NAFLD-related indicators. Sonchus brachyotus DC., a Chinese herb, exhibits hepatoprotective and potent antioxidant properties, suggesting its potential therapeutic use in NAFLD. Our preclinical animal model investigation suggests that the synergy between Sonchus brachyotus DC. extracts and synbiotics is significantly more effective in preventing and treating NAFLD, compared to the isolated use of either component. As a result, this combination holds the potential to introduce a fresh and encouraging therapeutic approach to addressing NAFLD.
Collapse
Affiliation(s)
- Wenwu Huang
- College of Life Sciences & Health, Wuhan University of Science & Technology, Wuhan 430065, China; (W.H.); (B.S.); (T.Z.)
| | - Boyuan Shen
- College of Life Sciences & Health, Wuhan University of Science & Technology, Wuhan 430065, China; (W.H.); (B.S.); (T.Z.)
| | - Xiumei Li
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research of CAAS, Beijing 100000, China;
| | - Tongcun Zhang
- College of Life Sciences & Health, Wuhan University of Science & Technology, Wuhan 430065, China; (W.H.); (B.S.); (T.Z.)
| | - Xiang Zhou
- College of Life Sciences & Health, Wuhan University of Science & Technology, Wuhan 430065, China; (W.H.); (B.S.); (T.Z.)
| |
Collapse
|
2
|
Polyphenol-Rich Liupao Tea Extract Prevents High-Fat Diet-Induced MAFLD by Modulating the Gut Microbiota. Nutrients 2022; 14:nu14224930. [PMID: 36432617 PMCID: PMC9697786 DOI: 10.3390/nu14224930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The modulation of gut microbiota dysbiosis might regulate the progression of metabolic-associated fatty liver disease (MAFLD). Here, we found that polyphenol-rich Liupao tea extract (PLE) prevents high-fat diet (HFD)-induced MAFLD in ApoE-/- male mice accompanied by protection of the intestinal barrier and downregulation of lipopolysaccharide (LPS)-related Toll-like receptor 4 (TLR4)-myeloid differentiation primary response 88 (MyD88) signaling in the liver. Fecal microbiome transplantation (FMT) from PLE-and-HFD-treated mice delayed MAFLD development significantly compared with FMT from HFD-treated mice. In this case, 16S rRNA gene sequencing revealed that Rikenellaceae and Odoribacter were significantly enriched and that Helicobacter was significantly decreased in not only the HFD+PLE group but also the HFD+PLE-FMT group. Furthermore, the level of 3-sulfodeoxycholic acid was significantly decreased in the HFD+PLE-FMT group compared with the HFD-FMT group. In conclusion, our data demonstrate that PLE could modulate the MAFLD phenotype in mice and that this effect is partly mediated through modulation of the gut microbiota.
Collapse
|
3
|
Piazzesi A, Putignani L. Extremely small and incredibly close: Gut microbes as modulators of inflammation and targets for therapeutic intervention. Front Microbiol 2022; 13:958346. [PMID: 36071979 PMCID: PMC9441770 DOI: 10.3389/fmicb.2022.958346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/25/2022] [Indexed: 11/15/2022] Open
Abstract
Chronic inflammation is a hallmark for a variety of disorders and is at least partially responsible for disease progression and poor patient health. In recent years, the microbiota inhabiting the human gut has been associated with not only intestinal inflammatory diseases but also those that affect the brain, liver, lungs, and joints. Despite a strong correlation between specific microbial signatures and inflammation, whether or not these microbes are disease markers or disease drivers is still a matter of debate. In this review, we discuss what is known about the molecular mechanisms by which the gut microbiota can modulate inflammation, both in the intestine and beyond. We identify the current gaps in our knowledge of biological mechanisms, discuss how these gaps have likely contributed to the uncertain outcome of fecal microbiota transplantation and probiotic clinical trials, and suggest how both mechanistic insight and -omics-based approaches can better inform study design and therapeutic intervention.
Collapse
Affiliation(s)
- Antonia Piazzesi
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- *Correspondence: Lorenza Putignani,
| |
Collapse
|
4
|
Fehily SR, Basnayake C, Wright EK, Kamm MA. The gut microbiota and gut disease. Intern Med J 2021; 51:1594-1604. [PMID: 34664371 DOI: 10.1111/imj.15520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/30/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022]
Abstract
The gut microbiota has a key role in the maintenance of good health, and in the pathogenesis of gastrointestinal diseases. These conditions include the inflammatory bowel diseases, colorectal cancer, coeliac disease and metabolic liver disease. Although the nature of the microbial disturbance in these conditions has not been fully characterised, this has not prevented the development of microbially based therapies. Microbial-changing therapies may address newly recognised pathophysiological contributors of disease and have the potential to replace or supplement standard therapies. Antibiotics play a role in initial Clostridiodes difficile disease and some specific inflammatory disorders. Probiotics have a more limited proven role. Faecal microbiota transplantation is of proven therapeutic benefit in recurrent C. difficile disease and ulcerative colitis. We review the current literature for microbiota-targeted therapies in gut disorders.
Collapse
Affiliation(s)
- Sasha R Fehily
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Chamara Basnayake
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Emily K Wright
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael A Kamm
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Montanari C, Parolisi S, Borghi E, Putignani L, Bassanini G, Zuvadelli J, Bonfanti C, Tummolo A, Dionisi Vici C, Biasucci G, Burlina A, Carbone MT, Verduci E. Dysbiosis, Host Metabolism, and Non-communicable Diseases: Trialogue in the Inborn Errors of Metabolism. Front Physiol 2021; 12:716520. [PMID: 34588993 PMCID: PMC8475650 DOI: 10.3389/fphys.2021.716520] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Inborn errors of metabolism (IEMs) represent a complex system model, in need of a shift of approach exploring the main factors mediating the regulation of the system, internal or external and overcoming the traditional concept of biochemical and genetic defects. In this context, among the established factors influencing the metabolic flux, i.e., diet, lifestyle, antibiotics, xenobiotics, infectious agents, also the individual gut microbiota should be considered. A healthy gut microbiota contributes in maintaining human health by providing unique metabolic functions to the human host. Many patients with IEMs are on special diets, the main treatment for these diseases. Hence, IEMs represent a good model to evaluate how specific dietary patterns, in terms of macronutrients composition and quality of nutrients, can be related to a characteristic microbiota associated with a specific clinical phenotype (“enterophenotype”). In the present review, we aim at reporting the possible links existing between dysbiosis, a condition reported in IEMs patients, and a pro-inflammatory status, through an altered “gut-liver” cross-talk network and a major oxidative stress, with a repercussion on the health status of the patient, increasing the risk of non-communicable diseases (NCDs). On this basis, more attention should be paid to the nutritional status assessment and the clinical and biochemical signs of possible onset of comorbidities, with the goal of improving the long-term wellbeing in IEMs. A balanced intestinal ecosystem has been shown to positively contribute to patient health and its perturbation may influence the clinical spectrum of individuals with IEMs. For this, reaching eubiosis through the improvement of the quality of dietary products and mixtures, the use of pre-, pro- and postbiotics, could represent both a preventive and therapeutic strategy in these complex diseases.
Collapse
Affiliation(s)
- Chiara Montanari
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Sara Parolisi
- UOS Metabolic and Rare Diseases, AORN Santobono, Naples, Italy
| | - Elisa Borghi
- Department of Health Science, University of Milan, Milan, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Juri Zuvadelli
- Clinical Department of Pediatrics, ASST Santi Paolo e Carlo, San Paolo Hospital, University of Milan, Milan, Italy
| | - Cristina Bonfanti
- Rare Metabolic Disease Unit, Pediatric Department, Fondazione MBBM, San Gerardo Hospital, Monza, Italy
| | - Albina Tummolo
- Metabolic Diseases and Clinical Genetics Unit, Children's Hospital Giovanni XXIII, Bari, Italy
| | | | - Giacomo Biasucci
- Department of Paediatrics & Neonatology, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Alberto Burlina
- Division of Inborn Metabolic Diseases, Department of Diagnostic Services, University Hospital of Padua, Padua, Italy
| | | | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.,Department of Health Science, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Sun J, Chen YL, Ding YC, Zhong H, Wu M, Liu ZH, Ge LP. Deposition of resistant bacteria and resistome through FMT in germ-free piglets. Lett Appl Microbiol 2021; 73:187-196. [PMID: 33894059 DOI: 10.1111/lam.13490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/30/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Faecal microbiota transplantation (FMT) has received considerable attention in recent years due to its remarkable efficacy in restoring a normal gut microbiome. Here, we established the groups of post-FMT recipient piglets using germ-free piglets during early life to characterize the colonization of gut microbiota composition and the enrichment of resistance gene acquisition. By metagenomic analysis, we identified 115 bacterial phyla and 2111 bacterial genera that were acquired by the FMT recipients. We found that early-life microbial colonization and the spread of resistomes in recipient piglets were age dependent. A total of 425, 425 and 358 AR genes primarily belonging to 114, 114 and 102 different types were detected in the donors, post-FMT recipients in the FMT-3D group and post-FMT recipients in the FMT-15D group respectively. Genes that encoded tetracycline, macrolide and chloramphenicol resistance proteins were the most dominant AR genes, and the results corresponded with the exposure of antibiotic consumption at farm. Bacteroides, Escherichia, Clostridium, Parabacteroides, Treponema, Lactobacillus and Enterococcus were significantly correlated with the distribution of AR genes. More importantly, the relative abundance of AR genes was positively correlated with the levels of mobile genetic elements. Our results indicate that early-life microbial colonization can persistently shape the gut microbiota and antibiotic resistome.
Collapse
Affiliation(s)
- J Sun
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, People's Republic of China
| | - Y L Chen
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China.,Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Y C Ding
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, People's Republic of China
| | - H Zhong
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China
| | - M Wu
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, People's Republic of China
| | - Z H Liu
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, People's Republic of China
| | - L P Ge
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, People's Republic of China
| |
Collapse
|
7
|
Intestinal Microecology: An Important Target for Chinese Medicine Treatment of Non-alcoholic Fatty Liver Disease. Chin J Integr Med 2020; 26:723-728. [DOI: 10.1007/s11655-020-3268-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 02/08/2023]
|
8
|
Abstract
We are in the midst of “the microbiome revolution”—not a day goes by without some new revelation on the potential role of the gut microbiome in some disease or disorder. From an ever-increasing recognition of the many roles of the gut microbiome in health and disease comes the expectation that its modulation could treat or prevent these very same diseases. A variety of interventions could, at least in theory, be employed to alter the composition or functional capacity of the microbiome, ranging from diet to fecal microbiota transplantation (FMT). For some, such as antibiotics, prebiotics, and probiotics, an extensive, albeit far from consistent, literature already exists; for others, such as other dietary supplements and FMT, high-quality clinical studies are still relatively few in number. Not surprisingly, researchers have turned to the microbiome itself as a source for new entities that could be used therapeutically to manipulate the microbiome; for example, some probiotic strains currently in use were sourced from the gastrointestinal tract of healthy humans. From all of the extant studies of interventions targeted at the gut microbiome, a number of important themes have emerged. First, with relatively few exceptions, we are still a long way from a precise definition of the role of the gut microbiome in many of the diseases where a disturbed microbiome has been described—association does not prove causation. Second, while animal models can provide fascinating insights into microbiota–host interactions, they rarely recapitulate the complete human phenotype. Third, studies of several interventions have been difficult to interpret because of variations in study population, test product, and outcome measures, not to mention limitations in study design. The goal of microbiome modulation is a laudable one, but we need to define our targets, refine our interventions, and agree on outcomes.
Collapse
Affiliation(s)
- Eamonn M M Quigley
- Lynda K and David M Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital, Houston, Texas, 77030, USA
| | - Prianka Gajula
- Department of Medicine, Houston Methodist Hospital, Houston, Texas, 77030, USA
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW The 'precision medicine' refers to the generation of identification and classification criteria for advanced taxonomy of patients, exploiting advanced models to infer optimized clinical decisions for each disease phenotype. RECENT FINDINGS The current article reviews new advances in the past 18 months on the microbiomics science intended as new discipline contributing to advanced 'precision medicine'. Recently published data highlight the importance of multidimensional data in the description of deep disease phenotypes, including microbiome and immune profiling, and support the efficacy of the systems medicine to better stratify patients, hence optimizing diagnostics, clinical management and response to treatments. SUMMARY The articles referenced in this review help inform the reader on new decision-support systems that can be based on multiomics patients' data including microbiome and immune profiling. These harmonized and integrated data can be elaborated by artificial intelligence to generate optimized diagnostic pipelines and clinical interventions.
Collapse
|
10
|
The promising role of probiotic and synbiotic therapy in aminotransferase levels and inflammatory markers in patients with nonalcoholic fatty liver disease - a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2019; 31:703-715. [PMID: 31009401 DOI: 10.1097/meg.0000000000001371] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide. The pathogenesis of NAFLD is complex and multifactorial. There is growing evidence that altered gut microbiota plays a key role in NAFLD progression. Probiotics/synbiotics, by modifying gut microbiota, may be a promising treatment choice for NAFLD management. AIM The aim of this study was to study the effect of probiotics/synbiotics on various laboratory and radiographic parameters in NAFLD management. MATERIALS AND METHODS A systematic review and meta-analysis were carried out according to Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. We searched PubMed, Medline, and Google Scholar for randomized-controlled trials that studied the role of probiotics/synbiotics in NAFLD. The primary outcome was change in baseline alanine aminotransferase and aspartate aminotransferase in the treatment arm. We used a random-effects model and inverse variance for the continuous data to estimate the mean difference (MD) and the standard mean difference (SMD) in RevMan Version 5.3. RESULTS We included 12 randomized-controlled trials for analysis. The intervention arm, which comprised of the probiotic and/or the synbiotic arm, showed a significant improvement in alanine aminotransferase levels, MD=-13.93, confidence interval (CI)=-20.20 to -7.66, P value of less than 0.0001, I=92% and aspartate aminotransferase levels MD=-11.45, CI=-15.15 to -7.74, P value of less than 0.00001, I=91%. There was a reduction in high-sensitivity C-reactive protein levels in the intervention arm, SMD=-0.68, CI=-1.10 to -0.26, P value of 0.001, I=0%. The liver fibrosis score improved in the intervention arm, MD=-0.71, CI=-0.81 to -0.61, P value less than 0.00001, I=0%. CONCLUSION Probiotic/synbiotic use improves aminotransaminase levels and reduces proinflammatory marker high-sensitivity C-reactive protein and liver fibrosis in NAFLD patients.
Collapse
|