1
|
Amaral R, Concha T, Vítor J, Almeida AJ, Calado C, Gonçalves LM. Chitosan Nanoparticles for Enhanced Immune Response and Delivery of Multi-Epitope Helicobacter pylori Vaccines in a BALB/c Mouse Model. Pharmaceutics 2025; 17:132. [PMID: 39861778 PMCID: PMC11768296 DOI: 10.3390/pharmaceutics17010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Helicobacter pylori is the leading cause of chronic gastritis, peptic ulcer, gastric adenocarcinoma, and mucosal-associated lymphoma. Due to the emerging problems with antibiotic treatment against H. pylori in clinical practice, H. pylori vaccination has gained more interest. Oral immunization is considered a promising approach for preventing initial colonization of this bacterium in the gastrointestinal tract, establishing a first line of defense at gastric mucosal surfaces. Chitosan nanoparticles can be exploited effectively for oral vaccine delivery due to their stability, simplicity of target accessibility, and beneficial mucoadhesive and immunogenic properties. Methods: In this study, new multi-epitope pDNA- and recombinant protein-based vaccines incorporating multiple H. pylori antigens were produced and encapsulated in chitosan nanoparticles for oral and intramuscular administration. The induced immune response was assessed through the levels of antigen-specific IgGs, secreted mucosal SIgA, and cytokines (IL-2, IL-10, and IFN-γ) in immunized BALB/C mice. Results: Intramuscular administration of both pDNA and recombinant protein-based vaccines efficiently stimulated the production of specific IgG2a and IgG1, which was supported by cytokines levels. Oral immunizations with either pDNA or recombinant protein vaccines revealed high SIgA levels, suggesting effective gastric mucosal immunization, contrasting with intramuscular immunizations, which did not induce SIgA. Conclusions: These findings indicate that both pDNA and recombinant protein vaccines encapsulated into chitosan nanoparticles are promising candidates for eradicating H. pylori and mitigating associated gastric diseases in humans.
Collapse
Affiliation(s)
- Rita Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (R.A.); (T.C.); (J.V.); (A.J.A.)
| | - Tomás Concha
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (R.A.); (T.C.); (J.V.); (A.J.A.)
| | - Jorge Vítor
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (R.A.); (T.C.); (J.V.); (A.J.A.)
| | - António J. Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (R.A.); (T.C.); (J.V.); (A.J.A.)
| | - Cecília Calado
- ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, 1959-007 Lisbon, Portugal;
- iBB—Institute for Bioengineering and Biosciences, i4HB—Associate Laboratory, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Lídia M. Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (R.A.); (T.C.); (J.V.); (A.J.A.)
| |
Collapse
|
2
|
Tu Z, Wang Y, Liang J, Liu J. Helicobacter pylori-targeted AI-driven vaccines: a paradigm shift in gastric cancer prevention. Front Immunol 2024; 15:1500921. [PMID: 39669583 PMCID: PMC11634812 DOI: 10.3389/fimmu.2024.1500921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024] Open
Abstract
Helicobacter pylori (H. pylori), a globally prevalent pathogen Group I carcinogen, presents a formidable challenge in gastric cancer prevention due to its increasing antimicrobial resistance and strain diversity. This comprehensive review critically analyzes the limitations of conventional antibiotic-based therapies and explores cutting-edge approaches to combat H. pylori infections and associated gastric carcinogenesis. We emphasize the pressing need for innovative therapeutic strategies, with a particular focus on precision medicine and tailored vaccine development. Despite promising advancements in enhancing host immunity, current Helicobacter pylori vaccine clinical trials have yet to achieve long-term efficacy or gain approval regulatory approval. We propose a paradigm-shifting approach leveraging artificial intelligence (AI) to design precision-targeted, multiepitope vaccines tailored to multiple H. pylori subtypes. This AI-driven strategy has the potential to revolutionize antigen selection and optimize vaccine efficacy, addressing the critical need for personalized interventions in H. pylori eradication efforts. By leveraging AI in vaccine design, we propose a revolutionary approach to precision therapy that could significantly reduce H. pylori -associated gastric cancer burden.
Collapse
Affiliation(s)
| | | | | | - Jinping Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
3
|
Liu Z, Li H, Huang X, Liu Q. Animal Models of Helicobacter pylori Infection and Vaccines: Current Status and Future Prospects. Helicobacter 2024; 29:e13119. [PMID: 39108210 DOI: 10.1111/hel.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 01/02/2025]
Abstract
Helicobacter pylori infection causes chronic gastritis, ulcers, and gastric cancer, making it a threat to human health. Despite the use of antibiotic therapy, the global prevalence of H. pylori infection remains high, necessitating early eradication measures. Immunotherapy, especially vaccine development, is a promising solution in this direction, albeit the selection of an appropriate animal model is critical in efficient vaccine production. Accordingly, we conducted a literature, search and summarized the commonly used H. pylori strains, H. pylori infection-related animal models, and models for evaluating H. pylori vaccines. Based on factors such as the ability to replicate human diseases, strain compatibility, vaccine types, and eliciting of immune responses, we systematically compared the advantages and disadvantages of different animal models, to obtain the informed recommendations. In addition, we have proposed novel perspectives on H. pylori-related animal models to advance research and vaccine evaluation for the prevention and treatment of diseases such as gastric cancer.
Collapse
Affiliation(s)
- Zhili Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- HuanKui Academy, Nanchang University, Nanchang, China
| | - He Li
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Liu Q, Li B, Lu J, Zhang Y, Shang Y, Li Y, Gong T, Zhang C. Recombinant outer membrane vesicles delivering eukaryotic expression plasmid of cytokines act as enhanced adjuvants against Helicobacter pylori infection in mice. Infect Immun 2023; 91:e0031323. [PMID: 37889003 PMCID: PMC10652931 DOI: 10.1128/iai.00313-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 10/28/2023] Open
Abstract
The widespread prevalence of Helicobacter pylori (H. pylori) infection remains a great challenge to human health. The existing vaccines are not ideal for preventing H. pylori infection; thus, exploring highly effective adjuvants may improve the immunoprotective efficacy of H. pylori vaccines. In a previous study, we found that the outer membrane vesicles (OMVs), a type of nanoscale particle spontaneously produced by Gram-negative bacteria, could act as adjuvants to boost the immune responses to vaccine antigens. In this study, we explored the potential application of OMVs as delivery vectors for adjuvant development. We constructed recombinant OMVs containing eukaryotic expression plasmid of cytokines, including interleukin 17A or interferon-γ, and evaluated their function as adjuvants in combination with inactivated whole-cell vaccine (WCV) or UreB as vaccine antigens. Our results showed that recombinant OMVs as adjuvants could induce stronger humoral and mucosal immune responses in mice than wild-type H. pylori OMVs and the cholera toxin (CT) adjuvant. Additionally, the recombinant OMVs significantly promoted Th1/Th2/Th17-type immune responses. Furthermore, the recombinant OMV adjuvant induced more potent clearance of H. pylori than CT and wild-type OMVs. Our findings suggest that the recombinant OMVs coupled with cytokines may become potent adjuvants for the development of novel and effective vaccines against H. pylori infection.
Collapse
Affiliation(s)
- Qiong Liu
- Center for Molecular Diagnosis and Precision Medicine, and The Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
- The Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Biaoxian Li
- Center for Molecular Diagnosis and Precision Medicine, and The Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
- The Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Jiahui Lu
- Center for Molecular Diagnosis and Precision Medicine, and The Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
- The Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Yejia Zhang
- The Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Yinpan Shang
- The Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Yi Li
- The Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Tian Gong
- Center for Molecular Diagnosis and Precision Medicine, and The Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chengsheng Zhang
- Center for Molecular Diagnosis and Precision Medicine, and The Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Garvey E, Rhead J, Suffian S, Whiley D, Mahmood F, Bakshi N, Letley D, White J, Atherton J, Winter JA, Robinson K. High incidence of antibiotic resistance amongst isolates of Helicobacter pylori collected in Nottingham, UK, between 2001 and 2018. J Med Microbiol 2023; 72. [PMID: 37962209 DOI: 10.1099/jmm.0.001776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
Introduction. Helicobacter pylori is the leading cause of peptic ulcers and gastric cancer. The most common treatment regimens use combinations of two or three antibiotics and a proton pump inhibitor (PPI) to suppress stomach acid. The World Health Organization designated clarithromycin-resistant H. pylori as a high priority pathogen for drug development, due to increasing antibiotic resistance globally.Hypothesis/Gap Statement. There is no routine surveillance of H. pylori primary antimicrobial sensitivities in the UK, and published data are lacking.Aim. This study aimed to characterize antimicrobial sensitivities of isolates collected in Nottingham, UK, between 2001 and 2018.Methodology. Gastric biopsy samples were collected, with informed written consent and ethics approval, from 162 patients attending the Queen's Medical Centre in Nottingham for an upper GI tract endoscopy. Antibiotic sensitivity was assessed using E-Tests and a more cost-effective disc diffusion test.Results. The clarithromycin, amoxicillin and levofloxacin disc diffusion tests provided identical results to E-Tests on a subset of 30 isolates. Disparities were observed in the metronidazole test results, however. In total, 241 isolates from 162 patients were tested using at least one method. Of all isolates, 28 % were resistant to clarithromycin, 62 % to metronidazole and 3 % to amoxicillin, which are used in first-line therapies. For those antibiotics used in second- and third-line therapies, 4 % were resistant to levofloxacin and none of the isolates were resistant to tetracycline. Resistance to more than one antibiotic was found in 27 % of isolates. The frequency of patients with a clarithromycin-resistant strain increased dramatically over time: from 16 % between 2001 and 2005 to 40 % between 2011 and 2018 (P=0.011). For the same time periods, there was also an increase in those with a metronidazole-resistant strain (from 58 to 78 %; P=0.05). The frequencies of clarithromycin and metronidazole resistance were higher in isolates from patients who had previously received eradication therapy, compared to those who had not (40 % versus 77 %, and 80 % versus 92 %, respectively). Of 79 pairs of isolates from the antrum and corpus regions of the same patient's stomach, only six had differences in their antimicrobial susceptibility profiles.Conclusion. Although there was high and increasing resistance to clarithromycin and metronidazole, there was no resistance to tetracycline and the frequencies of amoxicillin and levofloxacin resistance were very low.
Collapse
Affiliation(s)
- Elizabeth Garvey
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Joanne Rhead
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Suffi Suffian
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Daniel Whiley
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Farah Mahmood
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Naveen Bakshi
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Present address: Salisbury District Hospital, Salisbury, UK
| | - Darren Letley
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jonathan White
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - John Atherton
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jody Anne Winter
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Karen Robinson
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
6
|
Zhang Y, Wang C, Zhang L, Yu J, Yuan W, Li L. Vitamin D 3 eradicates Helicobacter pylori by inducing VDR-CAMP signaling. Front Microbiol 2022; 13:1033201. [PMID: 36569092 PMCID: PMC9772467 DOI: 10.3389/fmicb.2022.1033201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Background Vitamin D3 [VitD3, 1,25 (OH)2D3] is known to have immunomodulatory and anti-microbial properties; however, its activity against Helicobacter pylori is unclear. In this study, we established H. pylori infection models in wild-type and VitD3 receptor (VDR) knockdown mice and analyzed the effects of VitD3 and their underlying mechanisms. Methods VDR+/+ and VDR+/- mice were intragastrically infected with the H. pylori SS1 strain. After confirmation of H. pylori infection, mice were treated with different doses of VitD3. The infection levels in stomach tissues were quantified using the colony-forming assay, and the expression levels of the VDR and cathelicidin antimicrobial peptide (CAMP) in the gastric mucosa were analyzed by immunohistochemistry and western blotting. Results The gastric mucosa of VDR+/- mice was more susceptible to H. pylori colonization and had lower levels of VDR and CAMP expression than that of VDR+/+ mice. H. pylori infection upregulated VDR and CAMP expression in the stomach of both wild-type and mutant mice, and VitD3 treatment resulted in further increase of VDR and CAMP levels, while significantly and dose-dependently decreasing the H. pylori colonization rate in both mouse groups, without affecting blood calcium or phosphorus levels. Conclusion Our data indicate that oral administration of VitD3 reduces the H. pylori colonization rate and upregulates VDR and CAMP expression in the gastric mucosa, suggesting a role for VitD3/VDR/CAMP signaling in the eradication of H. pylori in the stomach. These findings provide important insights into the mechanism underlying the anti-H. pylori activity of VitD3 and should be useful in the development of measures to eradicate H. pylori.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chunya Wang
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Li Zhang
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jie Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Wenjie Yuan
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Lei Li
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, China,*Correspondence: Lei Li,
| |
Collapse
|
7
|
Idowu S, Bertrand PP, Walduck AK. Gastric organoids: Advancing the study of H. pylori pathogenesis and inflammation. Helicobacter 2022; 27:e12891. [PMID: 35384141 PMCID: PMC9287064 DOI: 10.1111/hel.12891] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 12/13/2022]
Abstract
For decades, traditional in vitro and in vivo models used for the study of Helicobacter pylori infection have relied heavily on the use of gastric cancer cell lines and rodents. Major challenges faced by these methods have been the inability to study cancer initiation in already cancerous cell lines, and the difficulty in translating results obtained in animal models due to genetic differences. These challenges have prevented a thorough understanding of the pathogenesis of disease and slowed the development of cancer therapies and a suitable vaccine against the pathogen. In recent years, the development of gastric organoids has provided great advantages over the traditional in vivo and in vitro models due to their similarities to the human stomach in vivo, their ease of use, and the capacity for long-term culture. This review discusses the advantages and limitations of existing in vivo and in vitro models of H. pylori infection, and how gastric organoids have been applied to study H. pylori pathogenesis, with a focus on how the pathogen interacts with the gastric epithelium, inflammatory processes, epithelial repair, and cancer initiation. The potential applications of organoids to address more complex questions on the role of hormones, vaccine-induced immunity are also discussed.
Collapse
|
8
|
Idowu S, Bertrand PP, Walduck AK. Homeostasis and Cancer Initiation: Organoids as Models to Study the Initiation of Gastric Cancer. Int J Mol Sci 2022; 23:2790. [PMID: 35269931 PMCID: PMC8911327 DOI: 10.3390/ijms23052790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer represents a significant disease burden worldwide. The factors that initiate cancer are not well understood. Chronic inflammation such as that triggered by H. pylori infection is the most significant cause of gastric cancer. In recent years, organoid cultures developed from human and animal adult stem cells have facilitated great advances in our understanding of gastric homeostasis. Organoid models are now being exploited to investigate the role of host genetics and bacterial factors on proliferation and DNA damage in gastric stem cells. The impact of a chronic inflammatory state on gastric stem cells and the stroma has been less well addressed. This review discusses what we have learned from the use of organoid models to investigate cancer initiation, and highlights questions on the contribution of the microbiota, chronic inflammatory milieu, and stromal cells that can now be addressed by more complex coculture models.
Collapse
Affiliation(s)
| | | | - Anna K. Walduck
- STEM College, RMIT University, Melbourne, VIC 3000, Australia; (S.I.); (P.P.B.)
| |
Collapse
|
9
|
Dos Santos Viana I, Cordeiro Santos ML, Santos Marques H, Lima de Souza Gonçalves V, Bittencourt de Brito B, França da Silva FA, Oliveira E Silva N, Dantas Pinheiro F, Fernandes Teixeira A, Tanajura Costa D, Oliveira Souza B, Lima Souza C, Vasconcelos Oliveira M, Freire de Melo F. Vaccine development against Helicobacter pylori: from ideal antigens to the current landscape. Expert Rev Vaccines 2021; 20:989-999. [PMID: 34139141 DOI: 10.1080/14760584.2021.1945450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022]
Abstract
Introduction: The interest of the world scientific community for an effective vaccine against Helicobacter pylori infection arises from its high prevalence and association with many diseases. Moreover, with an immunological response that is not always effective for the eradication of the bacteria and an increasing antibiotic resistance in the treatment of this infection, the search for a vaccine and new therapeutic modalities to control this infection is urgent.Areas covered: We bring an overview of the infection worldwide, discussing its prevalence, increasing resistance to antibiotics used in its therapy, in addition to the response of the immune system to the infection registered so far. Moreover, we address the most used antigens and their respective immunological responses expected or registered up to now. Finally, we address the trials and their partial results in development for such vaccines.Expert opinion: Although several studies for the development of an effective vaccine against this pathogen are taking place, many are still in the preclinical phase or even without updated information. In this sense, taking into account the high prevalence and association with important comorbidities, the interest of the pharmaceutical industry in developing an effective vaccine against this pathogen is questioned.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Davi Tanajura Costa
- Instituto Multidisciplinar Em Saúde, Universidade Federal da Bahia, Bahia, Brazil
| | - Briza Oliveira Souza
- Instituto Multidisciplinar Em Saúde, Universidade Federal da Bahia, Bahia, Brazil
| | - Cláudio Lima Souza
- Instituto Multidisciplinar Em Saúde, Universidade Federal da Bahia, Bahia, Brazil
| | | | | |
Collapse
|
10
|
Jalalpour S, Mirzaee V, Taheri M, Fathollahi MS, Khorramdelazadeh H, Jafarzadeh A. THE H. PYLORI-RELATED VIRULENCE FACTOR CAGA INFLUENCES THE EXPRESSION OF CHEMOKINES CXCL10, CCL17, CCL20, CCL22, AND THEIR RECEPTORS BY PERIPHERAL BLOOD MONONUCLEAR CELLS FROM PEPTIC ULCER PATIENTS. ARQUIVOS DE GASTROENTEROLOGIA 2021; 57:366-374. [PMID: 33331471 DOI: 10.1590/s0004-2803.202000000-70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND During the Helicobacter pylori (HP) infection, the infiltration of the leukocytes into stomach mucosa is directed by locally produced chemokines that play a decisive role in infection outcome. The CagA is the most potent virulence factor of HP, so that the infection with CagA + strains is associated with more severe complications than infection with CagA - HP. OBJECTIVE The aim was to determine the expression of chemokines CXCL10, CCL17, CCL20 and CCL22, and their receptors by CagA + HP- and CagA - HP-derived crude extract (HP-CE)-stimulated peripheral blood mononuclear cells (PBMCs) from peptic ulcer (PU) patients. METHODS The serum and the PBMCs were collected from 20 HP-infected PU patients, 20 HP-infected asymptomatic subjects (HIA) and 20 non-infected healthy subjects (NHS). The PBMCs were cultured in absence of stimulator or with 10 µg CagA + HP crude extract (CagA + CE), 10 µg CagA - HP crude extract (CagA - CE). Chemokines and receptors were measured by ELISA and real time-PCR respectively. RESULTS In PU patients, the production of chemokines CXCL10, CCL17, CCL20 and CCL22, and the expression of chemokine receptors CXCR3, CCR4 and CCR6 by CagA + CE-induced PBMCs were significantly higher than non-stimulated and CagA - CE stimulated cultures. The CXCL10 production by CagA + CE stimulated PBMCs from HIA subjects was significantly higher than the equal cultures from PU and NHS groups. The CCL17 and the CCL20 production by non-stimulated, CagA + CE stimulated, and CagA - CE stimulated PBMCs from PU subjects were significantly higher than the equal cultures from NHS and HIA groups. The CCL22 production by non-stimulated, CagA + CE stimulated and CagA - CE stimulated PBMCs from NHS group were significantly higher than the equal cultures from HIA and PU groups. The CagA + CE stimulated PBMCs from HIA subjects expressed lower amounts of CCR6 in comparison with CagA + CE stimulated PBMCs from NHS and PU groups. The serum levels CXCL10 and CCL20 in PU and HIA groups were significantly higher than NHS subjects. NHS and HIA groups displayed higher serum levels of CCL22 in comparison with PU patients. CONCLUSION Results indicated that the CagA status of bacterium influence the expression of chemokines and receptors by HP-CE stimulated PBMCs from PU patients.
Collapse
Affiliation(s)
- Shila Jalalpour
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Vahid Mirzaee
- Department of Internal Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Taheri
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahmood Sheikh Fathollahi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hossain Khorramdelazadeh
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Abdollah Jafarzadeh
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
11
|
Cen Q, Gao T, Ren Y, Lu X, Lei H. Immune evaluation of a Saccharomyces cerevisiae-based oral vaccine against Helicobacter pylori in mice. Helicobacter 2021; 26:e12772. [PMID: 33219579 DOI: 10.1111/hel.12772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is a common human pathogenic bacterium that is associated with gastric diseases. The current leading clinical therapy is combination antibiotics, but this treatment has safety issues, especially the induction of drug resistance. Therefore, developing a safe and effective vaccine against H. pylori is one of the best alternatives. OBJECTIVE To develop Saccharomyces cerevisiae (S. cerevisiae)-based oral vaccines and then demonstrate the feasibility of this platform for preventing H. pylori infection in the absence of a mucosal adjuvant. MATERIALS AND METHODS Saccharomyces cerevisiae (S. cerevisiae)-based oral vaccines, including EBY100/pYD1-UreB and EBY100/pYD1-VacA, were generated and analyzed by Western blot, Immunofluorescence analysis, flow cytometric assay, and indirect enzyme-link immunosorbent assay (ELISA). Further, antibody responses induced by oral administration of EBY100/pYD1-UreB, EBY100/pYD1-VacA, or EBY100/pYD1-UreB + EBY100/pYD1-VacA were measured in a mouse model. Lastly, the vaccinated mice were infected with H. pylori SS1, and colonization in the stomach were evaluated. RESULTS Saccharomyces cerevisiae-based H. pylori oral vaccines were successfully constructed. Mice orally administered with EBY100/pYD1-UreB, EBY100/pYD1-VacA, or EBY100/pYD1-UreB + EBY100/pYD1-VacA exhibited a significant humoral immune response as well as a mucosal immune response. Importantly, S. cerevisiae-based oral vaccines could effectively reduce bacterial loads with statistical significance after H. pylori infection. CONCLUSIONS Our study shows that S. cerevisiae-based platforms can serve as an alternative approach for the future development of promising bacterial oral vaccine candidates.
Collapse
Affiliation(s)
- Qianhong Cen
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Tong Gao
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Yi Ren
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Xin Lu
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Han Lei
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
12
|
The Mechanisms of Sijunzi Decoction in the Treatment of Chronic Gastritis Revealed by Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8850259. [PMID: 33149755 PMCID: PMC7603597 DOI: 10.1155/2020/8850259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/05/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
Chronic gastritis is characterized by inflammation in the gastric mucosa with a vicious circle in inflammatory cells and inflammatory mediators. Stomach adenocarcinoma would occur in the metaplastic gastric mucosa of chronic gastritis. Sijunzi decoction is a famous classical formula for the treatment of chronic gastritis. Although previous studies revealed some functions of Sijunzi decoction in treating chronic gastritis, the underlying mechanisms have not been illustrated clearly. In this study, we used network pharmacology to investigate the mechanism of Sijunzi decoction in treating chronic gastritis. Firstly, online datasets TCMSP, SWISS, and DisGeNET were used to investigate the functional mechanism of Sijunzi decoction against chronic gastritis and 18 genes were identified as targets of Sijunzi decoction in chronic gastritis. These 18 genes can be categorized into immunologically related genes and cancer-related genes. GO analysis showed that the 18 target genes were mainly enriched in angiogenesis, nitric oxide biosynthetic process, ERK1 and ERK2 cascade, cellular response to drug, and MAPK cascade. So, Sijunzi decoction alleviated chronic gastritis by inhibiting the local inflammatory response. Furthermore, we also investigated the impact of Sijunzi decoction on the peripheral blood leukocytes with our own RNA sequencing (RNA-seq) data of 11 chronic superficial gastritis patients. 102 differentially expressed genes (DEGs) were identified by comparing RNA-seq data of chronic superficial gastritis patients with healthy control groups. After performing a functional analysis on 102 DEGs and Sijunzi decoction potential targets and taking the intersection of these pathways, we found that platelet activation, angiogenesis, and pathways in cancer were candidate target pathways regulated by Sijunzi decoction. Thus, Sijunzi decoction also alleviates chronic gastritis by suppressing inflammatory response of peripheral blood leukocytes. Our results showed that Sijunzi decoction can ameliorate the local gastric inflammation and inflammations in peripheral blood leukocytes and might also reduce the incidence of stomach cancer in chronic gastritis.
Collapse
|