1
|
Lourenço R, Cesar R, Koifman G, Teixeira M, Santos D, Polivanov H, Alexandre K, Carneiro M, da Silva LID, Pereira MMSC, Castilhos Z. Land disposal of dredged sediments from an urbanized tropical lagoon: toxicity to soil fauna. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:590-607. [PMID: 38733499 DOI: 10.1007/s10646-024-02757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Urban tropical lagoons are commonly impacted by silting, domestic sewage and industrial wastes and the dredging of their sediments is often required to minimize environmental impacts. However, the ecological implications of land disposal of dredged sediments are still poorly investigated in the tropics. Aiming to contribute to filling this gap, an ecotoxicological evaluation was conducted with dredged sediments from Tijuca Lagoon (Rio de Janeiro, Brazil) using different lines of evidence, including soil and sediment characterization, metal determination, and acute and avoidance bioassays with Eisenia andrei. Two different dredged sediment samples, a sandy sediment and another muddy one, were obtained in two distinct and spatially representative sectors of the Tijuca Lagoon. The sediments were mixed with an artificial soil, Ferralsol and Spodosol to obtain doses between 0 (pure soil) and 12%. The sediment dose that caused mortality (LC50) or avoidance responses (EC50) to 50% of the organisms was estimated through PriProbit analysis. Metal concentrations and toxicity levels were higher in the muddy sediment (artificial soil LC50 = 3.84%; Ferralsol LC50 = 4.58%; Spodosol LC50 = 2.85%) compared to the sandy one (artificial soil LC50 = 10.94%; Ferralsol LC50 = 14.36%; Spodosol LC50 = 10.38%), since fine grains tend to adsorb more organic matter and contaminants. Mortality and avoidance responses were the highest in Spodosol due to its extremely sandy texture (98% of sand). Metal concentrations in surviving earthworms were generally low, except sodium whose bioaccumulation was high. Finally, the toxicity is probably linked to marine salts, and the earthworms seem to accumulate water in excess to maintain osmotic equilibrium, increasing their biomass.
Collapse
Affiliation(s)
- Rodrigo Lourenço
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Ricardo Cesar
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil.
- Department of Geology, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| | - Gustavo Koifman
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Geochemistry, Fluminense Federal University, UFF, Outeiro São João Baptista, s/n. Centro, Niterói, RJ, Brazil
| | - Matheus Teixeira
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Geochemistry, Fluminense Federal University, UFF, Outeiro São João Baptista, s/n. Centro, Niterói, RJ, Brazil
| | - Domynique Santos
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Helena Polivanov
- Department of Geology, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Katia Alexandre
- Centre for Mineral Technology, CETEM/MCTI, Av. Pedro Calmon, 900. Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Manuel Carneiro
- Centre for Mineral Technology, CETEM/MCTI, Av. Pedro Calmon, 900. Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Lilian Irene Dias da Silva
- Centre for Mineral Technology, CETEM/MCTI, Av. Pedro Calmon, 900. Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | | | - Zuleica Castilhos
- Centre for Mineral Technology, CETEM/MCTI, Av. Pedro Calmon, 900. Cidade Universitária, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Bhattacharjee AS, Phan D, Zheng C, Ashworth D, Schmidt M, Men Y, Ferreira JFS, Muir G, Hasan NA, Ibekwe AM. Dissemination of antibiotic resistance genes through soil-plant-earthworm continuum in the food production environment. ENVIRONMENT INTERNATIONAL 2024; 183:108374. [PMID: 38101104 DOI: 10.1016/j.envint.2023.108374] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Treated municipal wastewater (TMW) can provide a reliable source of irrigation water for crops, which is especially important in arid areas where water resources are limited or prone to drought. Nonetheless, TMW may contain residual antibiotics, potentially exposing the crops to these substances. The goal of this study was to investigate the dissemination of antibiotics resistance genes (ARGs) in the soil-plant-earthworm continuum after irrigation of spinach and radish plants with TMW containing trimethoprim, sulfamethoxazole, and sulfapyridine in a greenhouse experiment, followed by feeding of earthworms with harvested plant materials. Our results showed that antibiotic resistance genes (ARGs) were enriched in the soil-plant-earthworm microbiomes irrigated with TMW and TMW spiked with higher concentrations of antibiotics. The number of ARGs and antibiotic-resistant bacteria (ARB) enrichment varied with plant type, with spinach harboring a significantly higher amount of ARGs and ARB compared to radish. Our data showed that bulk and rhizosphere soils of spinach and radish plants irrigated with MilliQ water, TMW, TMW10, or TMW100 had significant differences in bacterial community (p < 0.001), ARG (p < 0.001), and virulence factor gene (VFG) (p < 0.001) diversities. The abundance of ARGs significantly decreased from bulk soil to rhizosphere to phyllosphere and endosphere. Using metagenome assembled genomes (MAGs), we recovered many bacterial MAGs and a near complete genome (>90 %) of bacterial MAG of genus Leclercia adecarboxylata B from the fecal microbiome of earthworm that was fed harvested radish tubers and spinach leaves grown on TMW10 irrigated waters, and this bacterium has been shown to be an emerging pathogen causing infection in immunocompromised patients that may lead to health complications and death. Therefore, crops irrigated with TMW containing residual antibiotics and ARGs may lead to increased incidences of enrichment of ARB in the soil-plant-earthworm continuum.
Collapse
Affiliation(s)
- Ananda S Bhattacharjee
- US Salinity Laboratory, USDA-ARS, 450 W. Big Springs Rd., Riverside, CA 92507, USA; Department of Environmental Sciences, University of California, Riverside, CA 92507, USA
| | - Duc Phan
- US Salinity Laboratory, USDA-ARS, 450 W. Big Springs Rd., Riverside, CA 92507, USA; Department of Environmental Sciences, University of California, Riverside, CA 92507, USA
| | - Chujing Zheng
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92507, USA
| | - Daniel Ashworth
- US Salinity Laboratory, USDA-ARS, 450 W. Big Springs Rd., Riverside, CA 92507, USA
| | - Michael Schmidt
- US Salinity Laboratory, USDA-ARS, 450 W. Big Springs Rd., Riverside, CA 92507, USA
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92507, USA
| | - Jorge F S Ferreira
- US Salinity Laboratory, USDA-ARS, 450 W. Big Springs Rd., Riverside, CA 92507, USA
| | | | - Nur A Hasan
- EzBiome, Gaithersburg, MD, USA; Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA
| | - Abasiofiok M Ibekwe
- US Salinity Laboratory, USDA-ARS, 450 W. Big Springs Rd., Riverside, CA 92507, USA.
| |
Collapse
|
3
|
Gallego S, Montemurro N, Béguet J, Rouard N, Philippot L, Pérez S, Martin-Laurent F. Ecotoxicological risk assessment of wastewater irrigation on soil microorganisms: Fate and impact of wastewater-borne micropollutants in lettuce-soil system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112595. [PMID: 34390984 DOI: 10.1016/j.ecoenv.2021.112595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
The implementation of the new Water Reuse regulation in the European Union brings to the forefront the need to evaluate the risks of using wastewater for crop irrigation. Here, a two-tier ecotoxicological risk assessment was performed to evaluate the fate of wastewater-borne micropollutants in soil and their ecotoxicological impact on plants and soil microorganisms. To this end, two successive cultivation campaigns of lettuces were irrigated with wastewater (at agronomical dose (not spiked) and spiked with a mixture of 14 pharmaceuticals at 10 and 100 µg/L each) in a controlled greenhouse experiment. Over the two cultivation campaigns, an accumulation of PPCPs was observed in soil microcosms irrigated with wastewater spiked with 100 μg/L of PPCPs with the highest concentrations detected for clarithromycin, hydrochlorothiazide, citalopram, climbazole and carbamazepine. The abundance of bacterial and fungal communities remained stable over the two cultivation campaigns and was not affected by any of the irrigation regimes applied. Similarly, no changes were observed in the abundance of ammonium oxidizing archaea (AOA) and bacteria (AOB), nor in clade A of commamox no matter the cultivation campaign or the irrigation regime considered. Only a slight increase was detected in clade B of commamox bacteria after the second cultivation campaign. Sulfamethoxazole-resistant and -degrading bacteria were not impacted either. The irrigation regimes had only a limited effect on the bacterial evenness. However, in response to wastewater irrigation the structure of soil bacterial community significantly changed the relative abundance of Acidobacteria, Chloroflexi, Verrucomicrobia, Beta-, Gamma- and Deltaprotebacteria. Twenty-eight operational taxonomic units (OTUs) were identified as responsible for the changes observed within the bacterial communities of soils irrigated with wastewater or with water. Interestingly, the relative abundance of these OTUs was similar in soils irrigated with either spiked or non-spiked irrigation solutions. This indicates that under both agronomical and worst-case scenario the mixture of fourteen PPCPs had no effect on soil bacterial community.
Collapse
Affiliation(s)
- Sara Gallego
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, INRAE, Agroécologie, Dijon, France
| | - Nicola Montemurro
- ENFOCHEM, Environmental Chemistry Department, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Jérémie Béguet
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, INRAE, Agroécologie, Dijon, France
| | - Nadine Rouard
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, INRAE, Agroécologie, Dijon, France
| | - Laurent Philippot
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, INRAE, Agroécologie, Dijon, France
| | - Sandra Pérez
- ENFOCHEM, Environmental Chemistry Department, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | | |
Collapse
|
4
|
Gallego S, Nos D, Montemurro N, Sanchez-Hernandez JC, Pérez S, Solé M, Martin-Laurent F. Ecotoxicological impact of the antihypertensive valsartan on earthworms, extracellular enzymes and soil bacterial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116647. [PMID: 33582628 DOI: 10.1016/j.envpol.2021.116647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
The use of reclaimed water in agriculture represents a promising alternative to relieve pressure on freshwater supplies, especially in arid or semiarid regions facing water scarcity. However, this implies introducing micropollutants such as pharmaceutical residues into the environment. The fate and the ecotoxicological impact of valsartan, an antihypertensive drug frequently detected in wastewater effluents, were evaluated in soil-earthworm microcosms. Valsartan dissipation in the soil was concomitant with valsartan acid formation. Although both valsartan and valsartan acid accumulated in earthworms, no effect was observed on biomarkers of exposure (acetylcholinesterase, glutathione S-transferase and carboxylesterase activities). The geometric mean index of soil enzyme activity increased in the soils containing earthworms, regardless of the presence of valsartan. Therefore, earthworms increased soil carboxylesterase, dehydrogenase, alkaline phosphatase, β-glucosidase, urease and protease activities. Although bacterial richness significantly decreased following valsartan exposure, this trend was enhanced in the presence of earthworms with a significant impact on both alpha and beta microbial diversity. The operational taxonomic units involved in these changes were related to four (Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes) of the eight most abundant phyla. Their relative abundances significantly increased in the valsartan-treated soils containing earthworms, suggesting the presence of potential valsartan degraders. The ecotoxicological effect of valsartan on microbes was strongly altered in the earthworm-added soils, hence the importance of considering synergistic effects of different soil organisms in the environmental risk assessment of pharmaceutical active compounds.
Collapse
Affiliation(s)
- Sara Gallego
- AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie Dijon, France
| | - David Nos
- ENFOCHEM, IDAEA-CSIC, C/Jordi Girona 18-26, 08034, Barcelona, Spain; Renewable Marine Resources Department, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | | | - Juan C Sanchez-Hernandez
- Laboratory of Ecotoxicology, Institute of Environmental Science (ICAM), University of Castilla-La Mancha, 45071, Toledo, Spain
| | - Sandra Pérez
- ENFOCHEM, IDAEA-CSIC, C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Montserrat Solé
- Renewable Marine Resources Department, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Fabrice Martin-Laurent
- AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie Dijon, France.
| |
Collapse
|