1
|
Borghi R, Magliocca V, Petrini S, Conti LA, Moreno S, Bertini E, Tartaglia M, Compagnucci C. Dissecting the Role of PCDH19 in Clustering Epilepsy by Exploiting Patient-Specific Models of Neurogenesis. J Clin Med 2021; 10:jcm10132754. [PMID: 34201522 PMCID: PMC8268119 DOI: 10.3390/jcm10132754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/26/2022] Open
Abstract
PCDH19-related epilepsy is a rare genetic disease caused by defective function of PCDH19, a calcium-dependent cell–cell adhesion protein of the cadherin superfamily. This disorder is characterized by a heterogeneous phenotypic spectrum, with partial and generalized febrile convulsions that are gradually increasing in frequency. Developmental regression may occur during disease progression. Patients may present with intellectual disability (ID), behavioral problems, motor and language delay, and a low motor tone. In most cases, seizures are resistant to treatment, but their frequency decreases with age, and some patients may even become seizure-free. ID generally persists after seizure remission, making neurological abnormalities the main clinical issue in affected individuals. An effective treatment is lacking. In vitro studies using patient-derived induced pluripotent stem cells (iPSCs) reported accelerated neural differentiation as a major endophenotype associated with PCDH19 mutations. By using this in vitro model system, we show that accelerated in vitro neurogenesis is associated with a defect in the cell division plane at the neural progenitors stage. We also provide evidence that altered PCDH19 function affects proper mitotic spindle orientation. Our findings identify an altered equilibrium between symmetric versus asymmetric cell division as a previously unrecognized mechanism contributing to the pathogenesis of this rare epileptic encephalopathy.
Collapse
Affiliation(s)
- Rossella Borghi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
- Department of Science, University “Roma Tre”, 00146 Rome, Italy;
| | - Valentina Magliocca
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
- Department of Science, University “Roma Tre”, 00146 Rome, Italy;
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (L.A.C.)
| | - Libenzio Adrian Conti
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (L.A.C.)
| | - Sandra Moreno
- Department of Science, University “Roma Tre”, 00146 Rome, Italy;
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
- Correspondence:
| |
Collapse
|
2
|
Niceforo A, Marioli C, Colasuonno F, Petrini S, Massey K, Tartaglia M, Bertini E, Moreno S, Compagnucci C. Altered cytoskeletal arrangement in induced pluripotent stem cells (iPSCs) and motor neurons from patients with riboflavin transporter deficiency. Dis Model Mech 2021; 14:dmm.046391. [PMID: 33468503 PMCID: PMC7927654 DOI: 10.1242/dmm.046391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/05/2021] [Indexed: 12/28/2022] Open
Abstract
The cytoskeletal network plays a crucial role in differentiation, morphogenesis, function and homeostasis of the nervous tissue, so that alterations in any of its components may lead to neurodegenerative diseases. Riboflavin transporter deficiency (RTD), a childhood-onset disorder characterized by degeneration of motor neurons (MNs), is caused by biallelic mutations in genes encoding the human riboflavin (RF) transporters. In a patient- specific induced Pluripotent Stem Cells (iPSCs) model of RTD, we recently demonstrated altered cell-cell contacts, energy dysmetabolism and redox imbalance.The present study focusses on cytoskeletal composition and dynamics associated to RTD, utilizing patients' iPSCs and derived MNs. Abnormal expression and distribution of α- and β-tubulin (α- and β-TUB), as well as imbalanced tyrosination of α-TUB, accompanied by impaired ability to repolymerize after nocodazole treatment, were found in RTD patient-derived iPSCs. Following differentiation, MNs showed consistent changes in TUB content, which was associated with abnormal morphofunctional features, such as neurite length and Ca++ homeostasis, suggesting impaired differentiation.Beneficial effects of RF supplementation, alone or in combination with the antioxidant molecule N-acetyl-cystine (NAC), were assessed. RF administration resulted in partially improved cytoskeletal features in patients' iPSCs and MNs, suggesting that redundancy of transporters may rescue cell functionality in the presence of adequate concentrations of the vitamin. Moreover, supplementation with NAC was demonstrated to be effective in restoring all the considered parameters, when used in combination with RF, thus supporting the therapeutic use of both compounds.
Collapse
Affiliation(s)
- Alessia Niceforo
- Department of Science, Laboratorio Interdipartimentale di Microscopia Elettronica, University Roma Tre, Rome 00146, Italy
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy
| | - Chiara Marioli
- Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy
| | - Fiorella Colasuonno
- Department of Science, Laboratorio Interdipartimentale di Microscopia Elettronica, University Roma Tre, Rome 00146, Italy
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy
| | - Keith Massey
- Science Director, Cure RTD Foundation, 6228 Northaven Road, Dallas, TX 75230, USA
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy
| | - Enrico Bertini
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy
- Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy
| | - Sandra Moreno
- Department of Science, Laboratorio Interdipartimentale di Microscopia Elettronica, University Roma Tre, Rome 00146, Italy
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy
| |
Collapse
|
3
|
Marioli C, Magliocca V, Petrini S, Niceforo A, Borghi R, Petrillo S, La Rosa P, Colasuonno F, Persichini T, Piemonte F, Massey K, Tartaglia M, Moreno S, Bertini E, Compagnucci C. Antioxidant Amelioration of Riboflavin Transporter Deficiency in Motoneurons Derived from Patient-Specific Induced Pluripotent Stem Cells. Int J Mol Sci 2020; 21:E7402. [PMID: 33036493 PMCID: PMC7582490 DOI: 10.3390/ijms21197402] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial dysfunction is a key element in the pathogenesis of neurodegenerative disorders, such as riboflavin transporter deficiency (RTD). This is a rare, childhood-onset disease characterized by motoneuron degeneration and caused by mutations in SLC52A2 and SLC52A3, encoding riboflavin (RF) transporters (RFVT2 and RFVT3, respectively), resulting in muscle weakness, ponto-bulbar paralysis and sensorineural deafness. Based on previous findings, which document the contribution of oxidative stress in RTD pathogenesis, we tested possible beneficial effects of several antioxidants (Vitamin C, Idebenone, Coenzyme Q10 and EPI-743, either alone or in combination with RF) on the morphology and function of neurons derived from induced pluripotent stem cells (iPSCs) from two RTD patients. To identify possible improvement of the neuronal morphotype, neurite length was measured by confocal microscopy after β-III tubulin immunofluorescent staining. Neuronal function was evaluated by determining superoxide anion generation by MitoSOX assay and intracellular calcium (Ca2+) levels, using the Fluo-4 probe. Among the antioxidants tested, EPI-743 restored the redox status, improved neurite length and ameliorated intracellular calcium influx into RTD motoneurons. In conclusion, we suggest that antioxidant supplementation may have a role in RTD treatment.
Collapse
Affiliation(s)
- Chiara Marioli
- Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy; (C.M.); (F.C.); (M.T.)
| | - Valentina Magliocca
- Department of Science, University Roma Tre, 00146 Rome, Italy; (V.M.); (T.P.)
- Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Department of Neuroscience, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy; (A.N.); (R.B.); (S.P.); (F.P.); (E.B.)
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy;
| | - Alessia Niceforo
- Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Department of Neuroscience, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy; (A.N.); (R.B.); (S.P.); (F.P.); (E.B.)
- Department of Science, LIME, University Roma Tre, 00146 Rome, Italy;
| | - Rossella Borghi
- Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Department of Neuroscience, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy; (A.N.); (R.B.); (S.P.); (F.P.); (E.B.)
- Department of Science, LIME, University Roma Tre, 00146 Rome, Italy;
| | - Sara Petrillo
- Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Department of Neuroscience, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy; (A.N.); (R.B.); (S.P.); (F.P.); (E.B.)
| | - Piergiorgio La Rosa
- Department of Psychology, Division of Neuroscience, Sapienza University of Rome, 00185 Rome, Italy;
| | - Fiorella Colasuonno
- Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy; (C.M.); (F.C.); (M.T.)
- Department of Science, LIME, University Roma Tre, 00146 Rome, Italy;
| | - Tiziana Persichini
- Department of Science, University Roma Tre, 00146 Rome, Italy; (V.M.); (T.P.)
| | - Fiorella Piemonte
- Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Department of Neuroscience, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy; (A.N.); (R.B.); (S.P.); (F.P.); (E.B.)
| | - Keith Massey
- Science Director, Cure RTD Foundation, 6228 Northaven Rd., Dallas, TX 75230, USA;
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy; (C.M.); (F.C.); (M.T.)
| | - Sandra Moreno
- Department of Science, LIME, University Roma Tre, 00146 Rome, Italy;
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Department of Neuroscience, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy; (A.N.); (R.B.); (S.P.); (F.P.); (E.B.)
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy; (C.M.); (F.C.); (M.T.)
| |
Collapse
|
4
|
Ruhl CR, Pasko BL, Khan HS, Kindt LM, Stamm CE, Franco LH, Hsia CC, Zhou M, Davis CR, Qin T, Gautron L, Burton MD, Mejia GL, Naik DK, Dussor G, Price TJ, Shiloh MU. Mycobacterium tuberculosis Sulfolipid-1 Activates Nociceptive Neurons and Induces Cough. Cell 2020; 181:293-305.e11. [PMID: 32142653 PMCID: PMC7102531 DOI: 10.1016/j.cell.2020.02.026] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/13/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022]
Abstract
Pulmonary tuberculosis, a disease caused by Mycobacterium tuberculosis (Mtb), manifests with a persistent cough as both a primary symptom and mechanism of transmission. The cough reflex can be triggered by nociceptive neurons innervating the lungs, and some bacteria produce neuron-targeting molecules. However, how pulmonary Mtb infection causes cough remains undefined, and whether Mtb produces a neuron-activating, cough-inducing molecule is unknown. Here, we show that an Mtb organic extract activates nociceptive neurons in vitro and identify the Mtb glycolipid sulfolipid-1 (SL-1) as the nociceptive molecule. Mtb organic extracts from mutants lacking SL-1 synthesis cannot activate neurons in vitro or induce cough in a guinea pig model. Finally, Mtb-infected guinea pigs cough in a manner dependent on SL-1 synthesis. Thus, we demonstrate a heretofore unknown molecular mechanism for cough induction by a virulent human pathogen via its production of a complex lipid.
Collapse
Affiliation(s)
- Cody R Ruhl
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Breanna L Pasko
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Haaris S Khan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lexy M Kindt
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chelsea E Stamm
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luis H Franco
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Connie C Hsia
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Zhou
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Colton R Davis
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tian Qin
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laurent Gautron
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael D Burton
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA; Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Galo L Mejia
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA; Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Dhananjay K Naik
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA; Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA; Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA; Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Michael U Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
5
|
Combination of Chemical and Neurotrophin Stimulation Modulates Neurotransmitter Receptor Expression and Activity in Transdifferentiating Human Adipose Stromal Cells. Stem Cell Rev Rep 2019; 15:851-863. [PMID: 31529274 DOI: 10.1007/s12015-019-09915-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adipose stromal cells are promising tools for clinical applications in regeneration therapies, due to their ease of isolation from tissue and its high yield; however, their ability to transdifferentiate into neural phenotypes is still a matter of controversy. Here, we show that combined chemical and neurotrophin stimulation resulted in neuron-like morphology and regulated expression and activity of several genes involved in neurogenesis and neurotransmission as well as ion currents mediated by NMDA and GABA receptors. Among them, expression patterns of genes coding for kinin-B1 and B2, α7 nicotinic, M1, M3 and M4 muscarinic acetylcholine, glutamatergic (AMPA2 and mGlu2), purinergic P2Y1 and P2Y4 and GABAergic (GABA-A, β3-subunit) receptors and neuronal nitric oxide synthase were up-regulated compared to levels of undifferentiated cells. Simultaneously, expression levels of P2X1, P2X4, P2X7 and P2Y6 purinergic and M5 muscarinic acetylcholine receptors were down-regulated. Agonist-induced activity levels of the studied receptor classes also augmented during neuronal transdifferentiation. Transdifferentiated cells expressed high levels of neuronal β3-tubulin, NF-H, NeuN and MAP-2 proteins as well as increased ASCL1, MYT1 and POU3F2 gene expression known to drive neuronal fate determination. The presented work contributes to a better understanding of transdifferentiation induced by neurotrophins for a prospective broad spectrum of medical applications.
Collapse
|
6
|
Dopaminergic and GABAergic Neuron In Vitro Differentiation from Embryonic Stem Cells. NEUROMETHODS 2017. [DOI: 10.1007/978-1-4939-7024-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Abstract
PURPOSE OF REVIEW In this review, we summarize recent developments in single-cell technologies that can be employed for the functional and molecular classification of endocrine cells in normal and neoplastic tissue. RECENT FINDINGS The emergence of new platforms for the isolation, analysis, and dynamic assessment of individual cell identity and reactive behavior enables experimental deconstruction of intratumoral heterogeneity and other contexts where variability in cell signaling and biochemical responsiveness inform biological function and clinical presentation. These tools are particularly appropriate for examining and classifying endocrine neoplasias, as the clinical sequelae of these tumors are often driven by disrupted hormonal responsiveness secondary to compromised cell signaling. Single-cell methods allow for multidimensional experimental designs incorporating both spatial and temporal parameters with the capacity to probe dynamic cell signaling behaviors and kinetic response patterns dependent upon sequential agonist challenge. SUMMARY Intratumoral heterogeneity in the provenance, composition, and biological activity of different forms of endocrine neoplasia presents a significant challenge for prognostic assessment. Single-cell technologies provide an array of powerful new approaches uniquely well suited for dissecting complex endocrine tumors. Studies examining the relationship between clinical behavior and tumor compositional variations in cellular activity are now possible, providing new opportunities to deconstruct the underlying mechanisms of endocrine neoplasia.
Collapse
|