Wang X, Huang R, Huang B, Li X. S1PR2 Regulates Autophagy Through the AKT/mTOR Pathway to Promote Pathological Damage in Alzheimer's Disease.
J Alzheimers Dis 2023;
96:1489-1504. [PMID:
38007654 DOI:
10.3233/jad-230533]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
BACKGROUND
Alzheimer's disease (AD) is a fatal and debilitating neurodegenerative disease. Sphingosine-1-phosphate receptor 2 (S1PR2), one of the receptors of S1P, is a key regulatory factor for various diseases.
OBJECTIVE
This study aimed to explore the role and possible mechanism of S1PR2 in AD.
METHODS
S1PR2 expression in the AD mice was detected, and after intervening S1PR2 expression with sh-S1PR2 in AD mice, the behavioral changes, pathological lesions of the hippocampus, autophagy level, and AKT/mTOR pathway activation were analyzed. Furthermore, SH-SY5Y cells were induced by Aβ25-35 to construct an AD cell model, and the effects of sh-S1PR2 on proliferation, apoptosis, autophagy, and AKT/mTOR pathway of AD cells were investigated. In addition, the effects of pathway inhibitor rapamycin on model cells were further analyzed.
RESULTS
The expression of S1PR2 was significantly increased in AD mice, the sh-S1PR2 significantly improved behavioral dysfunction, alleviated pathological injury of the hippocampus, increased the number of neurons, and inhibited Aβ production and p-tau expression, showing a positive effect on the AD pathology. In addition, silencing of S1PR2 expression significantly promoted the autophagy level and inhibited the activation of the AKT/mTOR pathway in AD model mice. In vitro experiments further confirmed that sh-S1PR2 promoted cell proliferation, inhibited apoptosis, relieved cytopathology, promoted autophagy, and inhibited the activation of the AKT/mTOR pathway in the cell model. The use of rapamycin further confirmed the role of AKT/mTOR pathway-mediated autophagy in the regulation of AD by S1PR2.
CONCLUSION
S1PR2 promoted AD pathogenesis by inhibiting autophagy through the activation of AKT/mTOR pathway.
Collapse