1
|
Salerno S, Piscioneri A, Morelli S, Gori A, Provasi E, Gagni P, Barile L, Cretich M, Chiari M, De Bartolo L. Extracellular vesicles selective capture by peptide-functionalized hollow fiber membranes. J Colloid Interface Sci 2024; 667:338-349. [PMID: 38640653 DOI: 10.1016/j.jcis.2024.04.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Recently, membrane devices and processes have been applied for the separation and concentration of subcellular components such as extracellular vesicles (EVs), which play a diagnostic and therapeutic role in many pathological conditions. However, the separation and isolation of specific EV populations from other components found in biological fluids is still challenging. Here, we developed a peptide-functionalized hollow fiber (HF) membrane module to achieve the separation and enrichment of highly pure EVs derived from the culture media of human cardiac progenitor cells. The strategy is based on the functionalization of PSf HF membrane module with BPt, a peptide sequence able to bind nanovesicles characterized by highly curved membranes. HF membranes were modified by a nanometric coating with a copoly azide polymer to limit non-specific interactions and to enable the conjugation with peptide ligand by click chemistry reaction. The BPt-functionalized module was integrated into a TFF process to facilitate the design, rationalization, and optimization of EV isolation. This integration combined size-based transport of species with specific membrane sensing ligands. The TFF integrated BPt-functionalized membrane module demonstrated the ability to selectively capture EVs with diameter < 200 nm into the lumen of fibers while effectively removing contaminants such as albumin. The captured and released EVs contain the common markers including CD63, CD81, CD9 and syntenin-1. Moreover, they maintained a round shape morphology and structural integrity highlighting that this approach enables EVs concentration and purification with low shear stress. Additionally, it achieved the removal of contaminants such as albumin with high reliability and reproducibility, reaching a removal of 93%.
Collapse
Affiliation(s)
- Simona Salerno
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, via P. Bucci, cubo 17/C, I-87036 Rende (CS), Italy
| | - Antonella Piscioneri
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, via P. Bucci, cubo 17/C, I-87036 Rende (CS), Italy
| | - Sabrina Morelli
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, via P. Bucci, cubo 17/C, I-87036 Rende (CS), Italy
| | - Alessandro Gori
- Institute of Chemical Sciences and Technologies "G. Natta", National Research Council of Italy, SCITEC-CNR, Via Mario Bianco 9, 20131, Milan, Italy
| | - Elena Provasi
- Lugano Cell Factory, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, via Tesserete 48, 6900 Lugano, Switzerland
| | - Paola Gagni
- Institute of Chemical Sciences and Technologies "G. Natta", National Research Council of Italy, SCITEC-CNR, Via Mario Bianco 9, 20131, Milan, Italy
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Via Chiesa 5, 6500 Bellinzona, Switzerland; Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Via Buffi 13, 6900 Lugano, Switzerland
| | - Marina Cretich
- Institute of Chemical Sciences and Technologies "G. Natta", National Research Council of Italy, SCITEC-CNR, Via Mario Bianco 9, 20131, Milan, Italy
| | - Marcella Chiari
- Institute of Chemical Sciences and Technologies "G. Natta", National Research Council of Italy, SCITEC-CNR, Via Mario Bianco 9, 20131, Milan, Italy
| | - Loredana De Bartolo
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, via P. Bucci, cubo 17/C, I-87036 Rende (CS), Italy.
| |
Collapse
|
2
|
Emmert MY, Burrello J, Wolint P, Hilbe M, Andriolo G, Balbi C, Provasi E, Turchetto L, Radrizzani M, Nazari-Shafti TZ, Cesarovic N, Neuber S, Falk V, Hoerstrup SP, Hemetsberger R, Gyöngyösi M, Barile L, Vassalli G. Intracoronary delivery of extracellular vesicles from human cardiac progenitor cells reduces infarct size in porcine acute myocardial infarction. Eur Heart J 2024; 45:728-732. [PMID: 37787585 DOI: 10.1093/eurheartj/ehad636] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/03/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023] Open
Affiliation(s)
- Maximilian Y Emmert
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charite (DHZC), Augustenburger Platz 1, 13353 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Jacopo Burrello
- Department of Medical Sciences, University of Turin, Via Giuseppe Verdi 8, 10124 Turin, Italy
| | - Petra Wolint
- Division of Surgical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Monika Hilbe
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057 Zurich, Switzerland
| | - Gabriella Andriolo
- Lugano Cell Factory, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Via Tesserete 48, 6900 Lugano, Switzerland
| | - Carolina Balbi
- Laboratory of Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, V ia Tesserete 48, 6900 Lugano, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Elena Provasi
- Lugano Cell Factory, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Via Tesserete 48, 6900 Lugano, Switzerland
| | - Lucia Turchetto
- Lugano Cell Factory, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Via Tesserete 48, 6900 Lugano, Switzerland
| | - Marina Radrizzani
- Lugano Cell Factory, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Via Tesserete 48, 6900 Lugano, Switzerland
| | - Timo Z Nazari-Shafti
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charite (DHZC), Augustenburger Platz 1, 13353 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nikola Cesarovic
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charite (DHZC), Augustenburger Platz 1, 13353 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Department of Health Sciences and Technology, ETH Zurich, Rämistrasse 101, 8092 Zurich, Switzerland
| | - Sebastian Neuber
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charite (DHZC), Augustenburger Platz 1, 13353 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charite (DHZC), Augustenburger Platz 1, 13353 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Department of Health Sciences and Technology, ETH Zurich, Rämistrasse 101, 8092 Zurich, Switzerland
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Rayyan Hemetsberger
- Department of Cardiology, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Lucio Barile
- Laboratory for Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, V ia Tesserete 48, 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Via Buffi 13, 6900 Lugano, Switzerland
| | - Giuseppe Vassalli
- Laboratory of Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, V ia Tesserete 48, 6900 Lugano, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Via Buffi 13, 6900 Lugano, Switzerland
| |
Collapse
|
3
|
Qiu FS, Wang JF, Guo MY, Li XJ, Shi CY, Wu F, Zhang HH, Ying HZ, Yu CH. Rgl-exomiR-7972, a novel plant exosomal microRNA derived from fresh Rehmanniae Radix, ameliorated lipopolysaccharide-induced acute lung injury and gut dysbiosis. Biomed Pharmacother 2023; 165:115007. [PMID: 37327587 DOI: 10.1016/j.biopha.2023.115007] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023] Open
Abstract
Plant-derived exosome-like nanoparticles (ELNs) have been proposed as a novel therapeutic tool for preventing human diseases. However, the number of well-verified plant ELNs remains limited. In this study, the microRNAs in ELNs derived from fresh Rehmanniae Radix, a well-known traditional Chinese herb for treating inflammatory and metabolic diseases, were determined by using microRNA sequencing to investigate the active components in the ELNs and the protection against lipopolysaccharide (LPS)-induced acute lung inflammation in vivo and in vitro. The results showed that rgl-miR-7972 (miR-7972) was the main ingredient in ELNs. It exerted stronger protective activities against LPS-induced acute lung inflammation than catalpol and acteoside, which are two well-known chemical markers in this herb. Moreover, miR-7972 decreased the production of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), reactive oxygen species (ROS) and nitric oxide (NO) in LPS-exposed RAW264.7 cells, thereby facilitating M2 macrophage polarization. Mechanically, miR-7972 downregulated the expression of G protein-coupled receptor 161 (GPR161), activating the Hedgehog pathway, and inhibited the biofilm form of Escherichia coli via targeting virulence gene sxt2. Therefore, miR-7972 derived from fresh R. Radix alleviated LPS-induced lung inflammation by targeting the GPR161-mediated Hedgehog pathway, recovering gut microbiota dysbiosis. It also provided a new direction for gaining novel bioactivity nucleic acid drugs and broadening the knowledge on cross-kingdom physiological regulation through miRNAs.
Collapse
Affiliation(s)
- Fen-Sheng Qiu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China
| | - Jia-Feng Wang
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mei-Ying Guo
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China
| | - Xue-Jian Li
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China
| | - Chang-Yi Shi
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China; Westlake University, Hangzhou 310024, China
| | - Fang Wu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China
| | - Huan-Huan Zhang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China
| | - Hua-Zhong Ying
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China.
| | - Chen-Huan Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China; Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China; Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310018, China.
| |
Collapse
|
4
|
Rebelatto CLK, Boldrini-Leite LM, Daga DR, Marsaro DB, Vaz IM, Jamur VR, de Aguiar AM, Vieira TB, Furman BP, Aguiar CO, Brofman PRS. Quality Control Optimization for Minimizing Security Risks Associated with Mesenchymal Stromal Cell-Based Product Development. Int J Mol Sci 2023; 24:12955. [PMID: 37629136 PMCID: PMC10455270 DOI: 10.3390/ijms241612955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been considered a therapeutic strategy in regenerative medicine because of their regenerative and immunomodulatory properties. The translation of MSC-based products has some challenges, such as regulatory and scientific issues. Quality control should be standardized and optimized to guarantee the reproducibility, safety, and efficacy of MSC-based products to be administered to patients. The aim of this study was to develop MSC-based products for use in clinical practice. Quality control assays include cell characterization, cell viability, immunogenicity, and cell differentiation; safety tests such as procoagulant tissue factor (TF), microbiological, mycoplasma, endotoxin, genomic stability, and tumorigenicity tests; and potency tests. The results confirm that the cells express MSC markers; an average cell viability of 96.9%; a low expression of HLA-DR and costimulatory molecules; differentiation potential; a high expression of TF/CD142; an absence of pathogenic microorganisms; negative endotoxins; an absence of chromosomal abnormalities; an absence of genotoxicity and tumorigenicity; and T-lymphocyte proliferation inhibition potential. This study shows the relevance of standardizing the manufacturing process and quality controls to reduce variability due to the heterogeneity between donors. The results might also be useful for the implementation and optimization of new analytical techniques and automated methods to improve safety, which are the major concerns related to MSC-based therapy.
Collapse
Affiliation(s)
- Carmen Lúcia Kuniyoshi Rebelatto
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Lidiane Maria Boldrini-Leite
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Debora Regina Daga
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Daniela Boscaro Marsaro
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Isadora May Vaz
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Valderez Ravaglio Jamur
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Alessandra Melo de Aguiar
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute—Fiocruz-Paraná, Curitiba 81350-010, Brazil;
| | - Thalita Bastida Vieira
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
| | - Bianca Polak Furman
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
| | - Cecília Oliveira Aguiar
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| |
Collapse
|
5
|
Neuber S, Ermer MR, Emmert MY, Nazari-Shafti TZ. Treatment of Cardiac Fibrosis with Extracellular Vesicles: What Is Missing for Clinical Translation? Int J Mol Sci 2023; 24:10480. [PMID: 37445658 PMCID: PMC10342089 DOI: 10.3390/ijms241310480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Heart failure is the leading cause of morbidity and mortality and currently affects more than 60 million people worldwide. A key feature in the pathogenesis of almost all forms of heart failure is cardiac fibrosis, which is characterized by excessive accumulation of extracellular matrix components in the heart. Although cardiac fibrosis is beneficial in the short term after acute myocardial injury to preserve the structural and functional integrity of the heart, persistent cardiac fibrosis contributes to pathological cardiac remodeling, leading to mechanical and electrical dysfunction of the heart. Despite its high prevalence, standard therapies specifically targeting cardiac fibrosis are not yet available. Cell-based approaches have been extensively studied as potential treatments for cardiac fibrosis, but several challenges have been identified during clinical translation. The observation that extracellular vesicles (EVs) derived from stem and progenitor cells exhibit some of the therapeutic effects of the parent cells has paved the way to overcome limitations associated with cell therapy. However, to make EV-based products a reality, standardized methods for EV production, isolation, characterization, and storage must be established, along with concrete evidence of their safety and efficacy in clinical trials. This article discusses EVs as novel therapeutics for cardiac fibrosis from a translational perspective.
Collapse
Affiliation(s)
- Sebastian Neuber
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (M.R.E.); (M.Y.E.); (T.Z.N.-S.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 13353 Berlin, Germany
| | - Miriam R. Ermer
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (M.R.E.); (M.Y.E.); (T.Z.N.-S.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Maximilian Y. Emmert
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (M.R.E.); (M.Y.E.); (T.Z.N.-S.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 13353 Berlin, Germany
- Institute for Regenerative Medicine, University of Zurich, 8044 Zurich, Switzerland
| | - Timo Z. Nazari-Shafti
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (M.R.E.); (M.Y.E.); (T.Z.N.-S.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 13353 Berlin, Germany
| |
Collapse
|
6
|
Altomare C, Bartolucci C, Sala L, Balbi C, Burrello J, Pietrogiovanna N, Burrello A, Bolis S, Panella S, Arici M, Krause R, Rocchetti M, Severi S, Barile L. A dynamic clamping approach using in silico IK1 current for discrimination of chamber-specific hiPSC-derived cardiomyocytes. Commun Biol 2023; 6:291. [PMID: 36934210 PMCID: PMC10024709 DOI: 10.1038/s42003-023-04674-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/07/2023] [Indexed: 03/20/2023] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CM) constitute a mixed population of ventricular-, atrial-, nodal-like cells, limiting the reliability for studying chamber-specific disease mechanisms. Previous studies characterised CM phenotype based on action potential (AP) morphology, but the classification criteria were still undefined. Our aim was to use in silico models to develop an automated approach for discriminating the electrophysiological differences between hiPSC-CM. We propose the dynamic clamp (DC) technique with the injection of a specific IK1 current as a tool for deriving nine electrical biomarkers and blindly classifying differentiated CM. An unsupervised learning algorithm was applied to discriminate CM phenotypes and principal component analysis was used to visualise cell clustering. Pharmacological validation was performed by specific ion channel blocker and receptor agonist. The proposed approach improves the translational relevance of the hiPSC-CM model for studying mechanisms underlying inherited or acquired atrial arrhythmias in human CM, and for screening anti-arrhythmic agents.
Collapse
Affiliation(s)
- Claudia Altomare
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Euler institute, Università Svizzera italiana, Lugano, Switzerland
| | - Chiara Bartolucci
- Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi', University of Bologna, Cesena, Italy
| | - Luca Sala
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Carolina Balbi
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Jacopo Burrello
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Division of Internal Medicine 4 and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Nicole Pietrogiovanna
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Alessio Burrello
- Department of Electrical, Electronic and Information Engineering (DEI), University of Bologna, Bologna, Italy
| | - Sara Bolis
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Stefano Panella
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Martina Arici
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Rolf Krause
- Euler institute, Università Svizzera italiana, Lugano, Switzerland
| | - Marcella Rocchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Stefano Severi
- Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi', University of Bologna, Cesena, Italy.
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland.
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
- Euler institute, Università Svizzera italiana, Lugano, Switzerland.
- Faculty of Biomedical Sciences, Università Svizzera italiana, Lugano, Switzerland.
- Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy.
| |
Collapse
|
7
|
Andriolo G, Provasi E, Brambilla A, Panella S, Soncin S, Cicero VL, Radrizzani M, Turchetto L, Barile L. Methodologies for Scalable Production of High-Quality Purified Small Extracellular Vesicles from Conditioned Medium. Methods Mol Biol 2023; 2668:69-98. [PMID: 37140791 DOI: 10.1007/978-1-0716-3203-1_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The development of an extracellular vesicles (EV)-based therapeutic product requires the implementation of reproducible and scalable, purification protocols for clinical-grade EV. Commonly used isolation methods including ultracentrifugation, density gradient centrifugation, size exclusion chromatography, and polymer-based precipitation, faced limitations such as yield efficiency, EV purity, and sample volume. We developed a GMP-compatible method for the scalable production, concentration, and isolation of EV through a strategy involving, tangential flow filtration (TFF). We applied this purification method for the isolation of EV from conditioned medium (CM) of cardiac stromal cells, namely cardiac progenitor cells (CPC) which has been shown to possess potential therapeutical application in heart failure. Conditioned medium collection and EV isolation using TFF demonstrated consistent particle recovery (~1013 particle/mL) enrichment of small/medium-EV subfraction (range size 120-140 nm). EV preparations achieved a 97% reduction of major protein-complex contaminant and showed unaltered biological activity. The protocol describes methods to assess EV identity and purity as well as procedures to perform downstream applications including functional potency assay and quality control tests. The large-scale manufacturing of GMP-grade EV represents a versatile protocol that can be easily applied to different cell sources for wide range of therapeutic areas.
Collapse
Affiliation(s)
- Gabriella Andriolo
- Lugano Cell Factory, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Elena Provasi
- Lugano Cell Factory, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Andrea Brambilla
- Lugano Cell Factory, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Stefano Panella
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Sabrina Soncin
- Lugano Cell Factory, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Viviana Lo Cicero
- Lugano Cell Factory, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Marina Radrizzani
- Lugano Cell Factory, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Lucia Turchetto
- Lugano Cell Factory, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
- Faculty of Biomedical Sciences, Università Svizzera italiana, Lugano, Switzerland.
| |
Collapse
|
8
|
Practical Considerations for Translating Mesenchymal Stromal Cell-Derived Extracellular Vesicles from Bench to Bed. Pharmaceutics 2022; 14:pharmaceutics14081684. [PMID: 36015310 PMCID: PMC9414392 DOI: 10.3390/pharmaceutics14081684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) have shown potential for the treatment of tendon and ligament injuries. This approach can eliminate the need to transplant live cells to the human body, thereby reducing issues related to the maintenance of cell viability and stability and potential erroneous differentiation of transplanted cells to bone or tumor. Despite these advantages, there are practical issues that need to be considered for successful clinical application of MSC-EV-based products in the treatment of tendon and ligament injuries. This review aims to discuss the general and tissue-specific considerations for manufacturing MSC-EVs for clinical translation. Specifically, we will discuss Good Manufacturing Practice (GMP)-compliant manufacturing and quality control (parent cell source, culture conditions, concentration method, quantity, identity, purity and impurities, sterility, potency, reproducibility, storage and formulation), as well as safety and efficacy issues. Special considerations for applying MSC-EVs, such as their compatibility with arthroscopy for the treatment of tendon and ligament injuries, are also highlighted.
Collapse
|
9
|
Lazzarini E, Lodrini AM, Arici M, Bolis S, Vagni S, Panella S, Rendon-Angel A, Saibene M, Metallo A, Torre T, Vassalli G, Ameri P, Altomare C, Rocchetti M, Barile L. Stress-induced premature senescence is associated with a prolonged QT interval and recapitulates features of cardiac aging. Theranostics 2022; 12:5237-5257. [PMID: 35836799 PMCID: PMC9274748 DOI: 10.7150/thno.70884] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/11/2022] [Indexed: 01/12/2023] Open
Abstract
Rationale: Aging in the heart is a gradual process, involving continuous changes in cardiovascular cells, including cardiomyocytes (CMs), namely cellular senescence. These changes finally lead to adverse organ remodeling and resulting in heart failure. This study exploits CMs from human induced pluripotent stem cells (iCMs) as a tool to model and characterize mechanisms involved in aging. Methods and Results: Human somatic cells were reprogrammed into human induced pluripotent stem cells and subsequently differentiated in iCMs. A senescent-like phenotype (SenCMs) was induced by short exposure (3 hours) to doxorubicin (Dox) at the sub-lethal concentration of 0.2 µM. Dox treatment induced expression of cyclin-dependent kinase inhibitors p21 and p16, and increased positivity to senescence-associated beta-galactosidase when compared to untreated iCMs. SenCMs showed increased oxidative stress, alteration in mitochondrial morphology and depolarized mitochondrial membrane potential, which resulted in decreased ATP production. Functionally, when compared to iCMs, SenCMs showed, prolonged multicellular QTc and single cell APD, with increased APD variability and delayed afterdepolarizations (DADs) incidence, two well-known arrhythmogenic indexes. These effects were largely ascribable to augmented late sodium current (INaL) and reduced delayed rectifier potassium current (Ikr). Moreover sarcoplasmic reticulum (SR) Ca2+ content was reduced because of downregulated SERCA2 and increased RyR2-mediated Ca2+ leak. Electrical and intracellular Ca2+ alterations were mostly justified by increased CaMKII activity in SenCMs. Finally, SenCMs phenotype was furtherly confirmed by analyzing physiological aging in CMs isolated from old mice in comparison to young ones. Conclusions: Overall, we showed that SenCMs recapitulate the phenotype of aged primary CMs in terms of senescence markers, electrical and Ca2+ handling properties and metabolic features. Thus, Dox-induced SenCMs can be considered a novel in vitro platform to study aging mechanisms and to envision cardiac specific anti-aging approach in humans.
Collapse
Affiliation(s)
- Edoardo Lazzarini
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Alessandra Maria Lodrini
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano, Italy.,Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Martina Arici
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Sara Bolis
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Sara Vagni
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Stefano Panella
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Azucena Rendon-Angel
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Melissa Saibene
- Department of Earth and Environmental Sciences, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Alessia Metallo
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Tiziano Torre
- Department of Cardiac Surgery Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Giuseppe Vassalli
- Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico, Genova, Italy.,Department of Internal Medicine, University of Genova, Genova, Italy
| | - Claudia Altomare
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Marcella Rocchetti
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano, Italy.,✉ Corresponding authors: Lucio Barile, PhD. Istituto Cardiocentro Ticino, Laboratories for Translational Research, EOC Via Chiesa 5, 6500 Bellinzona, Switzerland. +41 586667104 ; Marcella Rocchetti, PhD. University of Milano-Bicocca, Dept. of Biotechnology and Biosciences, P.za della Scienza 2, 20126 Milano, Italy. +39 0264483313
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.,Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy.,✉ Corresponding authors: Lucio Barile, PhD. Istituto Cardiocentro Ticino, Laboratories for Translational Research, EOC Via Chiesa 5, 6500 Bellinzona, Switzerland. +41 586667104 ; Marcella Rocchetti, PhD. University of Milano-Bicocca, Dept. of Biotechnology and Biosciences, P.za della Scienza 2, 20126 Milano, Italy. +39 0264483313
| |
Collapse
|