1
|
Choudhery MS, Arif T, Mahmood R, Mushtaq A, Niaz A, Hassan Z, Zahid H, Nayab P, Arshad I, Arif M, Majid M, Harris DT. Induced Mesenchymal Stem Cells: An Emerging Source for Regenerative Medicine Applications. J Clin Med 2025; 14:2053. [PMID: 40142860 PMCID: PMC11943107 DOI: 10.3390/jcm14062053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Regenerative medicine is gaining interest in the medical field due to the limitations of conventional treatments, which often fail to address the underlying cause of disease. In recent years, stem cell-based therapies have evolved as a promising alternative approach to treat those diseases that cannot be cured using conventional medicine. Adult stem cells, particularly the mesenchymal stem cells (MSCs), have attracted a lot of attention due to their ability to regenerate and repair human tissues and organs. MSCs isolated from adult tissues are well characterized and are currently the most common type of cells for use in regenerative medicine. However, their low number in adult donor tissues, donor-age and cell-source related heterogeneity, limited proliferative and differentiation potential, and early senescence in in vitro cultures, negatively affect MSC regenerative potential. These factors restrict MSC use for research as well as for clinical applications. To overcome these problems, MSCs with superior regenerative potential are required. Induced MSCs (iMSCs) are obtained from induced pluripotent stem cells (iPSCs). These cells are patient-specific, readily available, and have relatively superior regenerative potential and, therefore, can overcome the problems associated with the use of primary MSCs. In this review, the authors aim to discuss the characteristics, regenerative potential, and limitations of MSCs for regenerative medicine applications. The main methods to generate iMSCs from iPSCs have been discussed in detail. In addition, the proposed criteria for their molecular characterization, applications of iMSCs for disease modeling and drug discovery, as well as potential use in regenerative medicine have been explored in detail.
Collapse
Affiliation(s)
- Mahmood S. Choudhery
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 50161, Pakistan; (M.S.C.); (T.A.); (A.M.); (A.N.); (Z.H.); (H.Z.); (P.N.); (I.A.); (M.A.); (M.M.)
| | - Taqdees Arif
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 50161, Pakistan; (M.S.C.); (T.A.); (A.M.); (A.N.); (Z.H.); (H.Z.); (P.N.); (I.A.); (M.A.); (M.M.)
| | - Ruhma Mahmood
- Department of Pediatric Surgery, Allama Iqbal Medical College, Jinnah Hospital, Lahore 54700, Pakistan;
| | - Asad Mushtaq
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 50161, Pakistan; (M.S.C.); (T.A.); (A.M.); (A.N.); (Z.H.); (H.Z.); (P.N.); (I.A.); (M.A.); (M.M.)
| | - Ahmad Niaz
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 50161, Pakistan; (M.S.C.); (T.A.); (A.M.); (A.N.); (Z.H.); (H.Z.); (P.N.); (I.A.); (M.A.); (M.M.)
| | - Zaeema Hassan
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 50161, Pakistan; (M.S.C.); (T.A.); (A.M.); (A.N.); (Z.H.); (H.Z.); (P.N.); (I.A.); (M.A.); (M.M.)
| | - Hamda Zahid
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 50161, Pakistan; (M.S.C.); (T.A.); (A.M.); (A.N.); (Z.H.); (H.Z.); (P.N.); (I.A.); (M.A.); (M.M.)
| | - Pakeeza Nayab
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 50161, Pakistan; (M.S.C.); (T.A.); (A.M.); (A.N.); (Z.H.); (H.Z.); (P.N.); (I.A.); (M.A.); (M.M.)
| | - Iqra Arshad
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 50161, Pakistan; (M.S.C.); (T.A.); (A.M.); (A.N.); (Z.H.); (H.Z.); (P.N.); (I.A.); (M.A.); (M.M.)
| | - Mehak Arif
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 50161, Pakistan; (M.S.C.); (T.A.); (A.M.); (A.N.); (Z.H.); (H.Z.); (P.N.); (I.A.); (M.A.); (M.M.)
| | - Mashaim Majid
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 50161, Pakistan; (M.S.C.); (T.A.); (A.M.); (A.N.); (Z.H.); (H.Z.); (P.N.); (I.A.); (M.A.); (M.M.)
| | - David T. Harris
- Department of Immunobiology, University of Arizona Health Sciences Biorepository, College of Medicine, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
2
|
Wang Q, Wang Y, Chang C, Ma F, Peng D, Yang S, An Y, Deng Q, Wang Q, Gao F, Wang F, Tang H, Qi X, Jiang X, Cai D, Zhou G. Comparative analysis of mesenchymal stem/stromal cells derived from human induced pluripotent stem cells and the cognate umbilical cord mesenchymal stem/stromal cells. Heliyon 2023; 9:e12683. [PMID: 36647346 PMCID: PMC9840238 DOI: 10.1016/j.heliyon.2022.e12683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) show tremendous potential for regenerative medicine due to their self-renewal, multi-differentiation and immunomodulatory capabilities. Largely studies had indicated conventional tissue-derived MSCs have considerable limited expandability and donor variability which hinders further application. Induced pluripotent stem cell (iPSCs)-derived MSCs (iMSCs) have created exciting source for standardized cellular therapy. However, the cellular and molecular differences between iMSCs and the cognate tissue-derived MSCs remains poorly explored. In this study, we first successfully reprogrammed human umbilical cords-derived mesenchymal stem/stromal cells (UMSCs) into iPSCs by using the cocktails of mRNA. Subsequently, iPSCs were further differentiated into iMSCs in xeno-free induction medium. Then, iMSCs were compared with the donor matched UMSCs by assessing proliferative state, differentiation capability, immunomodulatory potential through immunohistochemical analysis, flow cytometric analysis, transcriptome sequencing analysis, and combine with coculture with immune cell population. The results showed that iMSCs exhibited high expression of MSCs positive-makers CD73, CD90, CD105 and lack expression of negative-maker cocktails CD34, CD45, CD11b, CD19, HLA-DR; also successfully differentiated into osteocytes, chondrocytes and adipocytes. Further, the iMSCs were similar with their parental UMSCs in cell proliferative state detected by the CCK-8 assay, and in cell rejuvenation state assessed by β-Galactosidase staining and telomerase activity related mRNA and protein analysis. However, iMSCs exhibited similarity to resident MSCs in Homeobox (Hox) genes expression profile and presented better neural differentiation potential by activation of NESTIN related pathway. Moreover, iMSCs owned enhanced immunosuppression capacity through downregulation pools of pro-inflammatory factors, including IL6, IL1B etc. and upregulation anti-inflammatory factors NOS1, TGFB etc. signals. In summary, our study provides an attractive cell source for basic research and offers fundamental biological insight of iMSCs-based therapy.
Collapse
Affiliation(s)
- Quanlei Wang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Biology Postdoctoral Research Station, Jinan University, Guangzhou, China,Cheerland Danlun Biopharma Co. Ltd., Dapeng New District, Shenzhen, China,Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yuwei Wang
- Cheerland Danlun Biopharma Co. Ltd., Dapeng New District, Shenzhen, China,The SZU-Cheerland Institute for Advanced and Innovative Medicine, Shenzhen, China
| | - Chongfei Chang
- Cheerland Danlun Biopharma Co. Ltd., Dapeng New District, Shenzhen, China
| | - Feilong Ma
- Cheerland Danlun Biopharma Co. Ltd., Dapeng New District, Shenzhen, China
| | - Dongxiu Peng
- Cheerland Danlun Biopharma Co. Ltd., Dapeng New District, Shenzhen, China
| | - Shun Yang
- Cheerland Danlun Biopharma Co. Ltd., Dapeng New District, Shenzhen, China
| | | | - Qiuting Deng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qixiao Wang
- Department of Oral and Maxillofacial Surgery, The First People's Hospital of Huaihua, University of South China, Huaihua, Hunan, China
| | - Fei Gao
- China Food and Drug Administration, Beijing, China
| | - Fei Wang
- The SZU-Cheerland Institute for Advanced and Innovative Medicine, Shenzhen, China
| | - Huiru Tang
- Cheerland Danlun Biopharma Co. Ltd., Dapeng New District, Shenzhen, China
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Biology Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Xiaoming Jiang
- The SZU-Cheerland Institute for Advanced and Innovative Medicine, Shenzhen, China,Corresponding author. The SZU-Cheerland Institute for Advanced and Innovative Medicine, Shenzhen, China.
| | - Dongqing Cai
- Key Laboratory of Regenerative Medicine of Ministry of Education, Biology Postdoctoral Research Station, Jinan University, Guangzhou, China,Corresponding author. Key Laboratory of Regenerative Medicine of Ministry of Education, Biology Postdoctoral Research Station, Jinan University, Guangzhou, China.
| | - Guangqian Zhou
- Cheerland Danlun Biopharma Co. Ltd., Dapeng New District, Shenzhen, China,Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Science Center, Shenzhen University, Shenzhen, China,The SZU-Cheerland Institute for Advanced and Innovative Medicine, Shenzhen, China,Corresponding author. The SZU-Cheerland Institute for Advanced and Innovative Medicine, Shenzhen, China.
| |
Collapse
|
3
|
Burns JS. The Evolving Landscape of Potency Assays. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1420:165-189. [PMID: 37258790 DOI: 10.1007/978-3-031-30040-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
There is a "goldilocks" aspect to potency assays. On the one hand, a comprehensive evaluation of the cell product with detailed quantitative measurement of the critical quality attribute/s of the desired biological activity is required. On the other hand, the potency assay benefits from simplification and lean approaches that avoid unnecessary complication and enhance robustness, to provide a reproducible and scalable product. There is a need to balance insightful knowledge of complex biological healing processes with straightforward manufacture of an advanced therapeutic medicinal product (ATMP) that can be administered in a trustworthy cost-effective manner. While earlier chapters within this book have highlighted numerous challenges facing the potency assay conundrum, this chapter offers a forward-looking perspective regarding the many recent advances concerning acellular products, cryopreservation, induced MSC, cell priming, nanotechnology, 3D culture, regulatory guidelines and evolving institutional roles, that are likely to facilitate potency assay development in the future.
Collapse
Affiliation(s)
- Jorge S Burns
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy.
| |
Collapse
|