1
|
Lu H, Jawdy S, Chen JG, Yang X, Kalluri UC. Poplar transformation with variable explant sources to maximize transformation efficiency. Sci Rep 2025; 15:1320. [PMID: 39779752 PMCID: PMC11711765 DOI: 10.1038/s41598-024-81235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
For decades, Agrobacterium tumefaciens-mediated plant transformation has played an integral role in advancing fundamental and applied plant biology. The recent omnipresent emergence of synthetic biology, which relies on plant transformation to manipulate plant DNA and gene expression for novel product biosynthesis, has further propelled basic as well as applied interests in plant transformation technologies. The strong demand for a faster design-build-test-learn cycle, the essence of synthetic biology, is, however, still ill-matched with the long-standing issues of high tissue culture recalcitrance and low transformation efficiency of a wide range of plant species especially food, fiber and energy crops. To maximize the utility of plant material and improve the transformation productivity per unit plant form, we studied the regeneration and transformation efficiency of different types of explants, including leaf, stem, petiole, and root from Populus, a woody perennial bioenergy crop. Our results show that root explants, in addition to the above-ground tissues, have considerable regeneration capacity and amenability to A. tumefaciens and, the resulting transformants have largely comparable morphology, reporter gene expression, and transcriptome profile, independent of the explant source tissue. Transcriptome analyses mapped to regeneration stages and transformation efficiencies further revealed the expression of the auxin and cytokinin signaling and various developmental pathway genes in leaf and root explants undergoing early organogenesis. We further report high-potential candidate genes that may potentially be associated with higher regeneration and transformation efficiency. Overall, our study shows that explants from above- and belowground organs of a Populus plant are suitable for genetic transformation and tissue culture regeneration, and together with the underlying transcriptome data open new routes to maximize plant explant utilization, stable transformation productivity, and plant transformation efficiency.
Collapse
Affiliation(s)
- Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Biology, University of NE - Kearney, Kearney, NE, USA
| | - Sara Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Udaya C Kalluri
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
2
|
Rüter P, Debener T, Winkelmann T. Unraveling the genetic basis of Rhizobium rhizogenes-mediated transformation and hairy root formation in rose using a genome-wide association study. PLANT CELL REPORTS 2024; 43:300. [PMID: 39627595 PMCID: PMC11615123 DOI: 10.1007/s00299-024-03388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024]
Abstract
KEY MESSAGE Multiple QTLs reveal the polygenic nature of R. rhizogenes-mediated transformation and hairy root formation in roses, with five key regions explaining 12.0-26.9% of trait variability and transformation-related candidate genes identified. Understanding genetic mechanisms of plant transformation remains crucial for biotechnology. This is particularly relevant for roses and other woody ornamentals that exhibit recalcitrant behavior in transformation procedures. Rhizobium rhizogenes-mediated transformation leading to hairy root (HR) formation provides an excellent model system to study transformation processes and host-pathogen interactions. Therefore, this study aimed to identify quantitative trait loci (QTLs) associated with HR formation and explore their relationship with adventitious root (AR) formation in rose as a model for woody ornamentals. A diversity panel of 104 in vitro grown rose genotypes was transformed with R. rhizogenes strain ATCC 15834 carrying a green fluorescent protein reporter gene. Phenotypic data on callus and root formation were collected for laminae and petioles. A genome-wide association study using 23,419 single-nucleotide polymorphism markers revealed significant QTLs on chromosomes one and two for root formation traits. Five key genomic regions explained 12.0-26.9% of trait variability, with some peaks overlapping previously reported QTLs for AR formation. This genetic overlap was supported by weak to moderate correlations between HR and AR formation traits, particularly in petioles. Candidate gene identification through literature review and transcriptomic data analysis revealed ten candidate genes involved in bacterial response, hormone signaling, and stress responses. Our findings provide new insights into the genetic control of HR formation in roses and highlight potential targets for improving transformation efficiency in ornamental crops, thereby facilitating future research and breeding applications.
Collapse
Affiliation(s)
- Philipp Rüter
- Institute of Horticultural Production Systems, Section Woody Plant and Propagation Physiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
| | - Thomas Debener
- Institute of Plant Genetics, Section Molecular Plant Breeding, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Traud Winkelmann
- Institute of Horticultural Production Systems, Section Woody Plant and Propagation Physiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| |
Collapse
|
3
|
Garcia J, Moravek M, Fish T, Thannhauser T, Fei Z, Sparks JP, Giovannoni J, Kao-Kniffin J. Rhizosphere microbiomes derived from vermicompost alter gene expression and regulatory pathways in tomato (Solanum lycopersicum, L.). Sci Rep 2024; 14:21362. [PMID: 39266588 PMCID: PMC11393070 DOI: 10.1038/s41598-024-71792-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024] Open
Abstract
The gut microbiome of worms from composting facilities potentially harbors organisms that are beneficial to plant growth and development. In this experiment, we sought to examine the potential impacts of rhizosphere microbiomes derived from Eisenia fetida worm castings (i.e. vermicompost) on tomato (Solanum lycopersicum, L.) plant growth and physiology. Our experiment consisted of a greenhouse trial lasting 17 weeks total in which tomato plants were grown with one of three inoculant treatments: a microbial inoculant created from vermicompost (V), a microbial inoculant created from sterilized vermicompost (SV), and a no-compost control inoculant (C). We hypothesized that living microbiomes from the vermicompost inoculant treatment would enhance host plant growth and gene expression profiles compared to plants grown in sterile and control treatments. Our data showed that bacterial community composition was significantly altered in tomato rhizospheres, but fungal community composition was highly variable in each treatment. Plant phenotypes that were significantly enhanced in the vermicompost and sterile vermicompost treatments, compared to the control, included aboveground biomass and foliar δ15N nitrogen. RNA sequencing revealed distinct gene expression changes in the vermicompost treatment, including upregulation of nutrient transporter genes such as Solyc06g074995 (high affinity nitrate transporter), which exhibited a 250.2-fold increase in expression in the vermicompost treatment compared to both the sterile vermicompost and control treatments. The plant transcriptome data suggest that rhizosphere microbiomes derived from vermicompost can influence tomato gene expression and growth-related regulatory pathways, which highlights the value of RNA sequencing in uncovering molecular responses in plant microbiome studies.
Collapse
Affiliation(s)
- J Garcia
- School of Integrative Plant Science, Cornell University, 135 Plant Science Building, Ithaca, NY, 14850, USA
| | - M Moravek
- School of Integrative Plant Science, Cornell University, 135 Plant Science Building, Ithaca, NY, 14850, USA
| | - T Fish
- USDA Robert W. Holley Center for Agriculture & Health, Ithaca, NY, 14850, USA
| | - T Thannhauser
- USDA Robert W. Holley Center for Agriculture & Health, Ithaca, NY, 14850, USA
| | - Z Fei
- Boyce Thompson Institute, Ithaca, NY, 14850, USA
| | - J P Sparks
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14850, USA
| | - J Giovannoni
- USDA Robert W. Holley Center for Agriculture & Health, Ithaca, NY, 14850, USA
- Boyce Thompson Institute, Ithaca, NY, 14850, USA
| | - J Kao-Kniffin
- School of Integrative Plant Science, Cornell University, 135 Plant Science Building, Ithaca, NY, 14850, USA.
| |
Collapse
|
4
|
Wei R, Zhang W, Li C, Hao Z, Huang D, Zhang W, Pan X. Establishment of Agrobacterium-mediated transformation system to Juglans sigillata Dode 'Qianhe-7'. Transgenic Res 2023; 32:193-207. [PMID: 37118332 DOI: 10.1007/s11248-023-00348-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 04/04/2023] [Indexed: 04/30/2023]
Abstract
An efficient genetic transformation system is of great significance for verifying gene function and improving plant breeding efficiency by gene engineering. In this study, a stable Agrobacterium mediated genetic transformation system of Juglans sigillata Dode 'Qianhe-7' was investigated using callus and negative pressure-assisted and ultrasonic-assisted transformation selection. The results showed that the axillary shoot leaves were suitable to induce callus and the callus proliferation rate could reach 516.27% when induction calli were cultured on DKW medium containing 0.5 mg L-1 indole-3-butyric acid, 1.2 mg L-1 2,4-dichlorophenoxyacetic acid and 0.5 mg L-1 kinetin for 18 d. In addition, negative pressure infection was the optimal infection method with the lowest browning rate (0.00%), high GFP conversion rate (16.67%), and better growth status. To further prove the feasibility of this genetic transformation system, the flavonol synthetase (JsFLS5) gene was successfully transformed into the into leaf-derived callus of 'Qianhe-7'. JsFLS5 expression and the content of total flavonoids in transformed callus were improved significantly compared with the untransformed callus, which proved that we had an efficient and reliable genetic transformation system using leaf-derived callus of Juglans sigillata.
Collapse
Affiliation(s)
- Rong Wei
- Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China
- College of Agricultural, Guizhou University, Guiyang, 550025, China
| | - Wen'e Zhang
- College of Agricultural, Guizhou University, Guiyang, 550025, China
| | - Chunxiang Li
- Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China
- College of Agricultural, Guizhou University, Guiyang, 550025, China
| | - Zhenkun Hao
- Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China
- College of Agricultural, Guizhou University, Guiyang, 550025, China
| | - Dong Huang
- Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China
- College of Agricultural, Guizhou University, Guiyang, 550025, China
| | - Wenlong Zhang
- Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China
- College of Agricultural, Guizhou University, Guiyang, 550025, China
| | - Xuejun Pan
- Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China.
- College of Agricultural, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
5
|
Transcriptomic Analysis of Radish ( Raphanus sativus L.) Spontaneous Tumor. PLANTS 2021; 10:plants10050919. [PMID: 34063717 PMCID: PMC8147785 DOI: 10.3390/plants10050919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022]
Abstract
Spontaneous tumors can develop in different organs of various plant species without any pathogen infection and, as a rule, appear in plants with a certain genotype: Mutants, interspecific hybrids, etc. In particular, among the inbred lines of radish (Raphanus sativus L.), lines that form spontaneous tumors on the taproot during the flowering period were obtained many years ago. In this work, we analyzed the differential gene expression in the spontaneous tumors of radish versus the lateral roots using the RNA-seq method. Data were obtained indicating the increased expression of genes associated with cell division and growth (especially genes that regulate G2-M transition and cytokinesis) in the spontaneous tumor. Among genes downregulated in the tumor tissue, genes participating in the response to stress and wounding, mainly involved in the biosynthesis of jasmonic acid and glucosinolates, were enriched. Our data will help elucidate the mechanisms of spontaneous tumor development in higher plants.
Collapse
|
6
|
Thompson MG, Moore WM, Hummel NFC, Pearson AN, Barnum CR, Scheller HV, Shih PM. Agrobacterium tumefaciens: A Bacterium Primed for Synthetic Biology. BIODESIGN RESEARCH 2020; 2020:8189219. [PMID: 37849895 PMCID: PMC10530663 DOI: 10.34133/2020/8189219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/26/2020] [Indexed: 10/19/2023] Open
Abstract
Agrobacterium tumefaciens is an important tool in plant biotechnology due to its natural ability to transfer DNA into the genomes of host plants. Genetic manipulations of A. tumefaciens have yielded considerable advances in increasing transformational efficiency in a number of plant species and cultivars. Moreover, there is overwhelming evidence that modulating the expression of various mediators of A. tumefaciens virulence can lead to more successful plant transformation; thus, the application of synthetic biology to enable targeted engineering of the bacterium may enable new opportunities for advancing plant biotechnology. In this review, we highlight engineering targets in both A. tumefaciens and plant hosts that could be exploited more effectively through precision genetic control to generate high-quality transformation events in a wider range of host plants. We then further discuss the current state of A. tumefaciens and plant engineering with regard to plant transformation and describe how future work may incorporate a rigorous synthetic biology approach to tailor strains of A. tumefaciens used in plant transformation.
Collapse
Affiliation(s)
- Mitchell G. Thompson
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - William M. Moore
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Niklas F. C. Hummel
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - Allison N. Pearson
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Collin R. Barnum
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - Henrik V. Scheller
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Patrick M. Shih
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
- Genome Center, University of California-Davis, Davis, CA, USA
| |
Collapse
|