1
|
McAdam A, Ito YA, Richard M, Spiegelman D, Rochefort D, Xiong L, Oskoui M, Zielinski D, Rouleau GA, Zhou S, Boykott KM, De Bie I. Identification of a Founder GLDN Variant Associated With "Lethal" Arthrogryposis in Nunavik Inuit: Implications for Obstetrical and Long-Term Survivors' Management. Am J Med Genet A 2025; 197:e63974. [PMID: 39713852 DOI: 10.1002/ajmg.a.63974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Biallelic variants in GLDN have recently been associated with lethal congenital contracture syndrome 11 (LCCS11), a form of fetal akinesia deformation sequence (FADS) with high neonatal mortality. In this report, we describe five individuals from two Canadian Inuit families originating from different communities in Nunavik all affected with FADS and harboring a rare homozygous missense variant, [NM_181789.4:c.82G >C p.(Ala28Pro)] in GLDN. Two pregnancies presented with significant obstetrical complications including placental abruption and hemorrhage. Four infants died shortly after birth, while one survived past the neonatal period. This individual, while apparently asymptomatic during infancy, then presented with progressive neuromuscular and respiratory compromise that became more evident in adolescence. Data from a Nunavik Inuit cohort demonstrated a minor allele frequency (MAF) of 0.03571 for this variant compared to 0.00001341 in the general population, suggesting a founder effect in the Nunavik Inuit population. Our findings support the presence of a founder variant associated with LCCS11 in Nunavik Inuit populations. Our data corroborate those of other reports, demonstrating that LCCS11 is not universally lethal, but long-term survivors are at risk of progressive neuromuscular compromise. We also highlight in this report the significant obstetrical complications associated with this fetal-onset condition.
Collapse
Affiliation(s)
- Alexa McAdam
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Yoko A Ito
- Division of Genome Diagnostics, BC Children's and BC Women's Hospital, Vancouver, British Columbia, Canada
| | - Marilyn Richard
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Dan Spiegelman
- Centre Hospitalier Universitaire mère-Enfant Sainte-Justine, Université de Montréal, Montréal, Quebec, Canada
| | - Daniel Rochefort
- Montreal Neurological Institute-Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Lan Xiong
- Montreal Neurological Institute-Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Maryam Oskoui
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
- Department of Pediatrics and Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - David Zielinski
- Division of Pediatric Respirology, Department of Pediatrics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute-Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Sirui Zhou
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
- Montreal Neurological Institute-Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Kym M Boykott
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Isabelle De Bie
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
2
|
Elitt CM, Volpe JJ. Degenerative Disorders of the Newborn. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:967-1007.e17. [DOI: 10.1016/b978-0-443-10513-5.00033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Burlina AP, Manara R, Gueraldi D. Lysosomal storage diseases. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:147-172. [PMID: 39322377 DOI: 10.1016/b978-0-323-99209-1.00008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Lysosomal storage disorders (LSDs) are a group of inherited metabolic diseases caused by dysfunction of the lysosomal system, with subsequent progressive accumulation of macromolecules, activation of inflammatory response, and cell death. Neurologic damage is almost always present, and it is usually degenerative. White matter (WM) involvement may be primary or secondary. Diseases with primary WM involvement are leukodystrophies, demyelinating (Krabbe disease and metachromatic leukodystrophy), and hypomyelinating leukodystrophies (free sialic acid storage disease, fucosidosis, and mucolipidosis type IV). LSDs with secondary WM involvement are classified as leukoencephalopathies and include gangliosidosis, mucopolysaccharidosis (MPS), ceroid neuronal lipofuscinosis, multiple sulfatase deficiency, alpha-mannosidosis, Pompe disease, and Fabry disease. Neurologic manifestations may overlap among LSDs and include developmental delays, motor, cognitive and speech impairments, seizures, visual failure, ataxia, and extrapyramidal signs. Most of LSDs are typically present in early or late infancy, but juvenile and adult forms also exist and are associated with predominantly neuropsychiatric and behavioral symptoms. The outcome of these disorders is generally poor and specific treatments (enzyme replacement therapy, hematopoietic stem cell transplantation, or gene therapy) are only available in a small number of them.
Collapse
Affiliation(s)
| | - Renzo Manara
- Neuroradiology Unit, Department of Neurosciences, University Hospital of Padova, Padova, Italy
| | - Daniela Gueraldi
- Division of Inherited Metabolic Diseases, University Hospital of Padova, Padova, Italy
| |
Collapse
|
4
|
Huizing M, Hackbarth ME, Adams DR, Wasserstein M, Patterson MC, Walkley SU, Gahl WA. Free sialic acid storage disorder: Progress and promise. Neurosci Lett 2021; 755:135896. [PMID: 33862140 DOI: 10.1016/j.neulet.2021.135896] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/27/2022]
Abstract
Lysosomal free sialic acid storage disorder (FSASD) is an extremely rare, autosomal recessive, neurodegenerative, multisystemic disorder caused by defects in the lysosomal sialic acid membrane exporter SLC17A5 (sialin). SLC17A5 defects cause free sialic acid and some other acidic hexoses to accumulate in lysosomes, resulting in enlarged lysosomes in some cell types and 10-100-fold increased urinary excretion of free sialic acid. Clinical features of FSASD include coarse facial features, organomegaly, and progressive neurodegenerative symptoms with cognitive impairment, cerebellar ataxia and muscular hypotonia. Central hypomyelination with cerebellar atrophy and thinning of the corpus callosum are also prominent disease features. Around 200 FSASD cases are reported worldwide, with the clinical spectrum ranging from a severe infantile onset form, often lethal in early childhood, to a mild, less severe form with subjects living into adulthood, also called Salla disease. The pathobiology of FSASD remains poorly understood and FSASD is likely underdiagnosed. Known patients have experienced a diagnostic delay due to the rarity of the disorder, absence of routine urine sialic acid testing, and non-specific clinical symptoms, including developmental delay, ataxia and infantile hypomyelination. There is no approved therapy for FSASD. We initiated a multidisciplinary collaborative effort involving worldwide academic clinical and scientific FSASD experts, the National Institutes of Health (USA), and the FSASD patient advocacy group (Salla Treatment and Research [S.T.A.R.] Foundation) to overcome the scientific, clinical and financial challenges facing the development of new treatments for FSASD. We aim to collect data that incentivize industry to further develop, obtain approval for, and commercialize FSASD treatments. This review summarizes current aspects of FSASD diagnosis, prevalence, etiology, and disease models, as well as challenges on the path to therapeutic approaches for FSASD.
Collapse
Affiliation(s)
- Marjan Huizing
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, United States.
| | - Mary E Hackbarth
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - David R Adams
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Melissa Wasserstein
- Departments of Pediatrics and Genetics, The Children's Hospital at Montefiore, Bronx, NY, 10467, United States; Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - Marc C Patterson
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, United States
| | - Steven U Walkley
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | | |
Collapse
|
5
|
Wen XY, Tarailo-Graovac M, Brand-Arzamendi K, Willems A, Rakic B, Huijben K, Da Silva A, Pan X, El-Rass S, Ng R, Selby K, Philip AM, Yun J, Ye XC, Ross CJ, Lehman AM, Zijlstra F, Abu Bakar N, Drögemöller B, Moreland J, Wasserman WW, Vallance H, van Scherpenzeel M, Karbassi F, Hoskings M, Engelke U, de Brouwer A, Wevers RA, Pshezhetsky AV, van Karnebeek CD, Lefeber DJ. Sialic acid catabolism by N-acetylneuraminate pyruvate lyase is essential for muscle function. JCI Insight 2018; 3:122373. [PMID: 30568043 DOI: 10.1172/jci.insight.122373] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/14/2018] [Indexed: 11/17/2022] Open
Abstract
Sialic acids are important components of glycoproteins and glycolipids essential for cellular communication, infection, and metastasis. The importance of sialic acid biosynthesis in human physiology is well illustrated by the severe metabolic disorders in this pathway. However, the biological role of sialic acid catabolism in humans remains unclear. Here, we present evidence that sialic acid catabolism is important for heart and skeletal muscle function and development in humans and zebrafish. In two siblings, presenting with sialuria, exercise intolerance/muscle wasting, and cardiac symptoms in the brother, compound heterozygous mutations [chr1:182775324C>T (c.187C>T; p.Arg63Cys) and chr1:182772897A>G (c.133A>G; p.Asn45Asp)] were found in the N-acetylneuraminate pyruvate lyase gene (NPL). In vitro, NPL activity and sialic acid catabolism were affected, with a cell-type-specific reduction of N-acetyl mannosamine (ManNAc). A knockdown of NPL in zebrafish resulted in severe skeletal myopathy and cardiac edema, mimicking the human phenotype. The phenotype was rescued by expression of wild-type human NPL but not by the p.Arg63Cys or p.Asn45Asp mutants. Importantly, the myopathy phenotype in zebrafish embryos was rescued by treatment with the catabolic products of NPL: N-acetyl glucosamine (GlcNAc) and ManNAc; the latter also rescuing the cardiac phenotype. In conclusion, we provide the first report to our knowledge of a human defect in sialic acid catabolism, which implicates an important role of the sialic acid catabolic pathway in mammalian muscle physiology, and suggests opportunities for monosaccharide replacement therapy in human patients.
Collapse
Affiliation(s)
- Xiao-Yan Wen
- Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for Biomedical science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, Physiology, Laboratory Medicine and Pathobiology and Institute of Medical Science, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Maja Tarailo-Graovac
- Department of Medical Genetics and Department of Pathology and Laboratory Sciences, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Institute of Physiology and Biochemistry, Faculty of Biology, The University of Belgrade, Belgrade, Serbia.,Departments of Biochemistry, Molecular Biology, and Medical Genetics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Koroboshka Brand-Arzamendi
- Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for Biomedical science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, Physiology, Laboratory Medicine and Pathobiology and Institute of Medical Science, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Anke Willems
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bojana Rakic
- Department of Medical Genetics and Department of Pathology and Laboratory Sciences, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Karin Huijben
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Afitz Da Silva
- Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Xuefang Pan
- Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Suzan El-Rass
- Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for Biomedical science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, Physiology, Laboratory Medicine and Pathobiology and Institute of Medical Science, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Robin Ng
- Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for Biomedical science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, Physiology, Laboratory Medicine and Pathobiology and Institute of Medical Science, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Katheryn Selby
- Department of Medical Genetics and Department of Pathology and Laboratory Sciences, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Anju Mary Philip
- Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for Biomedical science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, Physiology, Laboratory Medicine and Pathobiology and Institute of Medical Science, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Junghwa Yun
- Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for Biomedical science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, Physiology, Laboratory Medicine and Pathobiology and Institute of Medical Science, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - X Cynthia Ye
- Department of Medical Genetics and Department of Pathology and Laboratory Sciences, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Colin J Ross
- Department of Medical Genetics and Department of Pathology and Laboratory Sciences, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Anna M Lehman
- Department of Medical Genetics and Department of Pathology and Laboratory Sciences, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Fokje Zijlstra
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - N Abu Bakar
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Britt Drögemöller
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver Canada
| | - Jacqueline Moreland
- Departments of Biochemistry, Molecular Biology, and Medical Genetics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Wyeth W Wasserman
- Department of Medical Genetics and Department of Pathology and Laboratory Sciences, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Hilary Vallance
- Department of Medical Genetics and Department of Pathology and Laboratory Sciences, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Monique van Scherpenzeel
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands.,Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Farhad Karbassi
- Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for Biomedical science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, Physiology, Laboratory Medicine and Pathobiology and Institute of Medical Science, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Martin Hoskings
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver Canada
| | - Udo Engelke
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Arjan de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ron A Wevers
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alexey V Pshezhetsky
- Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Clara Dm van Karnebeek
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver Canada.,Departments of Pediatrics and Clinical Genetics, Emma Children's Hospital, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands.,Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
6
|
Elitt CM, Volpe JJ. Degenerative Disorders of the Newborn. VOLPE'S NEUROLOGY OF THE NEWBORN 2018:823-858.e11. [DOI: 10.1016/b978-0-323-42876-7.00029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Khan S, Ansar M, Khan AK, Shah K, Muhammad N, Shahzad S, Nickerson DA, Bamshad MJ, Santos-Cortez RLP, Leal SM, Ahmad W. A homozygous missense mutation in SLC25A16 associated with autosomal recessive isolated fingernail dysplasia in a Pakistani family. Br J Dermatol 2017; 178:556-558. [PMID: 28504827 DOI: 10.1111/bjd.15661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- S Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan.,Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - M Ansar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - A K Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - K Shah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - N Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - S Shahzad
- Department of Biotechnology & Bioinformatics, International Islamic University, Islamabad, Pakistan
| | - D A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA, U.S.A
| | - M J Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA, U.S.A.,Department of Pediatrics, University of Washington, Seattle, WA, U.S.A
| | - R L P Santos-Cortez
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, U.S.A.,Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, U.S.A
| | - S M Leal
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, U.S.A
| | - W Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
8
|
Abstract
Lysosomes are cytoplasmic organelles that contain a variety of different hydrolases. A genetic deficiency in the enzymatic activity of one of these hydrolases will lead to the accumulation of the material meant for lysosomal degradation. Examples include glycogen in the case of Pompe disease, glycosaminoglycans in the case of the mucopolysaccharidoses, glycoproteins in the cases of the oligosaccharidoses, and sphingolipids in the cases of Niemann-Pick disease types A and B, Gaucher disease, Tay-Sachs disease, Krabbe disease, and metachromatic leukodystrophy. Sometimes, the lysosomal storage can be caused not by the enzymatic deficiency of one of the hydrolases, but by the deficiency of an activator protein, as occurs in the AB variant of GM2 gangliosidosis. Still other times, the accumulated lysosomal material results from failed egress of a small molecule as a consequence of a deficient transporter, as in cystinosis or Salla disease. In the last couple of decades, enzyme replacement therapy has become available for a number of lysosomal storage diseases. Examples include imiglucerase, taliglucerase and velaglucerase for Gaucher disease, laronidase for Hurler disease, idursulfase for Hunter disease, elosulfase for Morquio disease, galsulfase for Maroteaux-Lamy disease, alglucosidase alfa for Pompe disease, and agalsidase alfa and beta for Fabry disease. In addition, substrate reduction therapy has been approved for certain disorders, such as eliglustat for Gaucher disease. The advent of treatment options for some of these disorders has led to newborn screening pilot studies, and ultimately to the addition of Pompe disease and Hurler disease to the Recommended Uniform Screening Panel (RUSP) in 2015 and 2016, respectively.
Collapse
Affiliation(s)
- Carlos R. Ferreira
- Division of Genetics and Metabolism, Children’s National Health System, Washington, DC, USA
- George Washington University School of Medicine & Health Sciences, Washington, DC, USA
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William A. Gahl
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Tarailo-Graovac M, Drögemöller BI, Wasserman WW, Ross CJD, van den Ouweland AMW, Darin N, Kollberg G, van Karnebeek CDM, Blomqvist M. Identification of a large intronic transposal insertion in SLC17A5 causing sialic acid storage disease. Orphanet J Rare Dis 2017; 12:28. [PMID: 28187749 PMCID: PMC5303239 DOI: 10.1186/s13023-017-0584-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sialic acid storage diseases are neurodegenerative disorders characterized by accumulation of sialic acid in the lysosome. These disorders are caused by mutations in SLC17A5, the gene encoding sialin, a sialic acid transporter located in the lysosomal membrane. The most common form of sialic acid storage disease is the slowly progressive Salla disease, presenting with hypotonia, ataxia, epilepsy, nystagmus and findings of cerebral and cerebellar atrophy. Hypomyelination and corpus callosum hypoplasia are typical as well. We report a 16 year-old boy with an atypically mild clinical phenotype of sialic acid storage disease characterized by psychomotor retardation and a mixture of spasticity and rigidity but no ataxia, and only weak features of hypomyelination and thinning of corpus callosum on MRI of the brain. RESULTS The thiobarbituric acid method showed elevated levels of free sialic acid in urine and fibroblasts, indicating sialic acid storage disease. Initial Sanger sequencing of SLC17A5 coding regions did not show any pathogenic variants, although exon 9 could not be sequenced. Whole exome sequencing followed by RNA and genomic DNA analysis identified a homozygous 6040 bp insertion in intron 9 of SLC17A5 corresponding to a long interspersed element-1 retrotransposon (KF425758.1). This insertion adds two splice sites, both resulting in a frameshift which in turn creates a premature stop codon 4 bp into intron 9. CONCLUSIONS This study describes a novel pathogenic variant in SLC17A5, namely an intronic transposal insertion, in a patient with mild biochemical and clinical phenotypes. The presence of a small fraction of normal transcript may explain the mild phenotype. This case illustrates the importance of including lysosomal sialic acid storage disease in the differential diagnosis of developmental delay with postnatal onset and hypomyelination, as well as intronic regions in the genetic investigation of inborn errors of metabolism.
Collapse
Affiliation(s)
- Maja Tarailo-Graovac
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Britt I Drögemöller
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wyeth W Wasserman
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Colin J D Ross
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | - Niklas Darin
- Department of Pediatrics, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Gittan Kollberg
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Clara D M van Karnebeek
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada. .,Centre for Molecular Medicine and Therapeutics, Vancouver, Canada. .,Department of Pediatrics, University of British Columbia, Vancouver, Canada. .,Department of Pediatrics, Academic Medical Centre, Amsterdam, The Netherlands.
| | - Maria Blomqvist
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|