1
|
Dawod MS, Alswerki MN, Darabah AJ, Satari AO, Alrwashdeh AO, Alaqarbeh ZN, Alisi MS. Reverse Total Shoulder Arthroplasty in Alkaptonuric Shoulder: Case Presentation, Review of Literature, and Technical Considerations. Orthop Res Rev 2023; 15:69-77. [PMID: 37091223 PMCID: PMC10115201 DOI: 10.2147/orr.s402214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/06/2023] [Indexed: 04/25/2023] Open
Abstract
Importance Alkaptonuric shoulder arthropathy is a challenging clinical entity in arthroplasty. In this report, we describe an atypical presentation, technical considerations, a literature review, and some recommendations of significant benefits to shoulder surgeons. Objective The author's objective in this report is to illustrate the deleterious metabolic effects of ochronosis on cartilage and the development of early arthritis. Design This is a case report study, done in May 2021. Setting Middle East, Jordan. Introduction Alkaptonuria is a metabolic disease of amino acid metabolism that can affect multiple organ systems, including the musculoskeletal system. The musculoskeletal system manifestations usually involve the spine, knee, and, uncommonly, the shoulder. Tissue ochronosis caused by alkaptonuria can cause significant damage to the joint and surrounding soft tissue envelope. In this case, we presented a patient who has end-stage glenohumeral arthritis and rotator cuff arthropathy secondary to ochronosis. Case Presentation In this case report, we present a 42-year-old male patient who presented to the clinic with severe right shoulder pain and limitations of the range of motion, especially with abduction. The patient underwent radiographic assessment, which showed a rotator cuff arthropathy combined with advanced degenerative changes of the right glenohumeral joint. The patient underwent reverse total shoulder arthroplasty. After the surgery and on follow-up later on for a period of one year and after a period of physiotherapy and rehabilitation, the patient showed remarkable improvement in the pain and range of motion. Conclusion Alkaptonuria can have a detrimental effect on the articular cartilage and the surrounding soft tissue envelope, which might manifest clinically as early degenerative arthritis changes in a young adult patient. Shoulder involvement is extremely rare and can manifest with substantial injury to the glenohumeral joint; whenever such extensive damage is present, shoulder arthroplasty is the best treatment.
Collapse
Affiliation(s)
- Moh’d S Dawod
- Mutah University, Faculty of Medicine, Al-karak, Jordan
| | - Mohammad N Alswerki
- Jordan University Hospital, Amman, Jordan
- Correspondence: Mohammad N Alswerki, Jordan University Hospital, Queen Rania Al-Abdullah Street – Aljubeiha / P.O. Box 13046, Amman, 11942, Jordan, Email
| | | | - Anas O Satari
- Mutah University, Faculty of Medicine, Al-karak, Jordan
| | | | | | - Mohammed S Alisi
- Jordan University Hospital, Amman, Jordan
- Faculty of Medicine, Islamic University of Gaza, Gaza, Palestine
- Ministry of Health, Gaza, Palestine
| |
Collapse
|
2
|
Norman BP, Davison AS, Hughes JH, Sutherland H, Wilson PJ, Berry NG, Hughes AT, Milan AM, Jarvis JC, Roberts NB, Ranganath LR, Bou-Gharios G, Gallagher JA. Metabolomic studies in the inborn error of metabolism alkaptonuria reveal new biotransformations in tyrosine metabolism. Genes Dis 2022; 9:1129-1142. [PMID: 35685462 PMCID: PMC9170613 DOI: 10.1016/j.gendis.2021.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/13/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
Alkaptonuria (AKU) is an inherited disorder of tyrosine metabolism caused by lack of active enzyme homogentisate 1,2-dioxygenase (HGD). The primary consequence of HGD deficiency is increased circulating homogentisic acid (HGA), the main agent in the pathology of AKU disease. Here we report the first metabolomic analysis of AKU homozygous Hgd knockout (Hgd -/-) mice to model the wider metabolic effects of Hgd deletion and the implication for AKU in humans. Untargeted metabolic profiling was performed on urine from Hgd -/- AKU (n = 15) and Hgd +/- non-AKU control (n = 14) mice by liquid chromatography high-resolution time-of-flight mass spectrometry (Experiment 1). The metabolites showing alteration in Hgd -/- were further investigated in AKU mice (n = 18) and patients from the UK National AKU Centre (n = 25) at baseline and after treatment with the HGA-lowering agent nitisinone (Experiment 2). A metabolic flux experiment was carried out after administration of 13C-labelled HGA to Hgd -/-(n = 4) and Hgd +/-(n = 4) mice (Experiment 3) to confirm direct association with HGA. Hgd -/- mice showed the expected increase in HGA, together with unexpected alterations in tyrosine, purine and TCA-cycle pathways. Metabolites with the greatest abundance increases in Hgd -/- were HGA and previously unreported sulfate and glucuronide HGA conjugates, these were decreased in mice and patients on nitisinone and shown to be products from HGA by the 13C-labelled HGA tracer. Our findings reveal that increased HGA in AKU undergoes further metabolism by mainly phase II biotransformations. The data advance our understanding of overall tyrosine metabolism, demonstrating how specific metabolic conditions can elucidate hitherto undiscovered pathways in biochemistry and metabolism.
Collapse
Key Words
- AKU, alkaptonuria
- AMRT, accurate mass/retention time
- Alkaptonuria
- Biotransformation
- CV, coefficient of variation
- FC, fold change
- FDR, false-discovery rate
- HGA, homogentisic acid
- HGD, homogentisate 1,2-dioxygenase
- HPPD, hydroxyphenylpyruvic acid dioxygenase
- LC-QTOF-MS, liquid chromatography quadrupole time-of-flight mass spectrometry
- MS/MS, tandem mass spectrometry
- MSC, Molecular Structure Correlator
- Metabolism
- Metabolomics
- Mice
- PCA, principal component analysis
- QC, quality control
- RT, retention time
Collapse
Affiliation(s)
- Brendan P Norman
- Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Andrew S Davison
- Department of Clinical Biochemistry & Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool University Hospital, Prescot Street, Liverpool, L7 8XP, UK
| | - Juliette H Hughes
- Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Hazel Sutherland
- Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.,School of Sport & Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Peter Jm Wilson
- Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Neil G Berry
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Andrew T Hughes
- Department of Clinical Biochemistry & Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool University Hospital, Prescot Street, Liverpool, L7 8XP, UK
| | - Anna M Milan
- Department of Clinical Biochemistry & Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool University Hospital, Prescot Street, Liverpool, L7 8XP, UK
| | - Jonathan C Jarvis
- School of Sport & Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Norman B Roberts
- Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Lakshminarayan R Ranganath
- Department of Clinical Biochemistry & Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool University Hospital, Prescot Street, Liverpool, L7 8XP, UK
| | - George Bou-Gharios
- Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - James A Gallagher
- Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
3
|
Impact of Nitisinone on the Cerebrospinal Fluid Metabolome of a Murine Model of Alkaptonuria. Metabolites 2022; 12:metabo12060477. [PMID: 35736410 PMCID: PMC9230570 DOI: 10.3390/metabo12060477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Nitisinone-induced hypertyrosinaemia is well documented in Alkaptonuria (AKU), and there is uncertainty over whether it may contribute to a decline in cognitive function and/or mood by altering neurotransmitter metabolism. The aim of this work was to evaluate the impact of nitisinone on the cerebrospinal fluid (CSF) metabolome in a murine model of AKU, with a view to providing additional insight into metabolic changes that occur following treatment with nitisinone. Methods: 17 CSF samples were collected from BALB/c Hgd−/− mice (n = 8, treated with nitisinone—4 mg/L and n = 9, no treatment). Samples were diluted 1:1 with deionised water and analysed using a 1290 Infinity II liquid chromatography system coupled to a 6550 quadrupole time-of-flight mass spectrometry (Agilent, Cheadle, UK). Raw data were processed using a targeted feature extraction algorithm and an established in-house accurate mass retention time database. Matched entities (±10 ppm theoretical accurate mass and ±0.3 min retention time window) were filtered based on their frequency and variability. Experimental groups were compared using a moderated t-test with Benjamini−Hochberg false-discovery rate adjustment. Results: L-Tyrosine, N-acetyl-L-tyrosine, γ-glutamyl-L-tyrosine, p-hydroxyphenylacetic acid, and 3-(4-hydroxyphenyl)lactic acid were shown to increase in abundance (log2 fold change 2.6−6.9, 3/5 were significant p < 0.05) in the mice that received nitisinone. Several other metabolites of interest were matched, but no significant differences were observed, including the aromatic amino acids phenylalanine and tryptophan, and monoamine metabolites adrenaline, 3-methoxy-4-hydroxyphenylglycol, and octopamine. Conclusions: Evaluation of the CSF metabolome of a murine model of AKU revealed a significant increase in the abundance of a limited number of metabolites following treatment with nitisinone. Further work is required to understand the significance of these findings and the mechanisms by which the altered metabolite abundances occur.
Collapse
|
4
|
Davison AS, Hughes G, Harrold JA, Clarke P, Griffin R, Ranganath LR. Long-term low dose nitisinone therapy in adults with alkaptonuria shows no cognitive decline or increased severity of depression. JIMD Rep 2022; 63:221-230. [PMID: 35433173 PMCID: PMC8995840 DOI: 10.1002/jmd2.12272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Little is documented on whether nitisinone-induced hypertyrosinaemia alters cognitive functioning or leads to worsening depression in alkaptonuria (AKU). Wechsler Adult Intelligence Scale-IV (WAIS-IV) and Beck Depression Inventory-II (BDI-II) assessments were performed before and annually following treatment with nitisinone 2 mg daily to assess the impact on cognitive functioning and severity of depression. Serum tyrosine concentrations were also measured annually. WAIS-IV: 63 patients (27 females/36 males: mean age[years] [±standard deviation, range] 55.7[13.7, 26-79]; 60.3[9.6, 19-75]) were included at baseline for assessment of: verbal comprehension (VC), perceptual reasoning (PR), working memory (WM), and processing speed (PS) using separate indices. Over the 6-year period studied 43, 39, 36, 29, 26 and 15 patients had annual assessments. Using a longitudinal model (age and sex adjusted) no significant differences were observed in any of the indices over this period, apart from VC which showed a significant increase after adjustment for sex (p < 0.05). BDI-II: 74 patients (32 females/42 males: mean age[years] [±standard deviation, range] 56.1[13.2, 26-79]; 42 males, 51.5[16.3, 19-70]) were included at baseline. Over the 7-year period studied 48, 47, 38, 34, 32, 24 and 12 patients had annual assessments. No significant differences in BDI-II scores were observed when compared to baseline. Hypertyrosinaemia was observed in all patients following treatment with nitisinone (p < 0.001, at all annual visits). Serum tyrosine was not correlated with WAIS-IV sub-test indices or BDI-II scores pre- or post-nitisinone therapy. These findings suggest that treatment with nitisinone does not affect cognitive functioning and or lead to increased severity of depression.
Collapse
Affiliation(s)
- Andrew S. Davison
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical LaboratoriesRoyal Liverpool University HospitalLiverpoolUK
| | - Gin Hughes
- Department of PsychologyUniversity of LiverpoolLiverpoolUK
| | | | - Pam Clarke
- Department of PsychologyUniversity of LiverpoolLiverpoolUK
| | - Rebecca Griffin
- Liverpool Cancer Trials UnitUniversity of LiverpoolLiverpoolUK
| | - Lakshminarayan R. Ranganath
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical LaboratoriesRoyal Liverpool University HospitalLiverpoolUK
| |
Collapse
|
5
|
Judd S, Khedr M, Milan AM, Davison AS, Hughes AT, Needham A, Psarelli EE, Shenkin A, Ranganath LR. The nutritional status of people with alkaptonuria: An exploratory analysis suggests a protein/energy dilemma. JIMD Rep 2020; 53:45-60. [PMID: 32395409 PMCID: PMC7203650 DOI: 10.1002/jmd2.12084] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/16/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alkaptonuria (AKU) is a disorder of tyrosine/protein metabolism leading to accumulation of homogentisic acid. Clinical management historically recommended reducing dietary protein intake, especially in childhood, which has since been discredited in the literature. For the first time, analysis of baseline cross-sectional nutritional surveillance data from a large cohort of AKU patients is presented, which has clinical implications in all aspects of treatment planning. METHOD Seventy-four patients (mean 55 years) admitted to the National Alkaptonuria Centre (NAC), underwent a global nutritional assessment, which included objective anthropometry, bioimpedance measures, habitual nutritional intake using a 7-day food diary and key nutritional biomarkers, including 24 hours urinary nitrogen, serum albumin, total protein and total 25-hydroxy vitamin D. All data was compared with cohort norms or recommended nutrient intakes for health (RNI). The potential beneficial impact of protein and anti-inflammatory nutrients such as vitamin C, selenium, and zinc were statistically interrogated against the AKU severity score index (AKUSSI)-a validated measure of disease progression stratified by age. RESULTS Fifty percent of AKU patients reported some level of protein restriction at some point in their lives. In comparison with national data sets, AKU patients present with significantly lower than predicted mid-upper arm circumference, grip strength, BMI, total energy and protein intake, and higher than predicted percentage body fat. They therefore meet the ESPEN criteria as "clinically undernourished." Severity fluctuates over the life course. No statistical association is identified between protein intake, expressed as %RNI or g/kg, or anti-inflammatory nutrients, including vitamin C as a high dose supplement on the severity of the disease, when correlated against the validated AKUSSI score. CONCLUSION AKU patients are at risk of protein depletion associated with a "perfect storm" of risk factors: historical, poorly evidenced recommendations to reduce total protein intake; limited mobility as the condition progresses, compromising muscle integrity; frequent hospital admissions for major surgery associated with multiple joint replacements, creating pinch points of high metabolic demand and the potential impact of the disease itself. As this is the first time this risk has been identified, the authors consider the dietetic implications of nitisinone treatment, which requires dietary protein control to manage the acquired tyrosinaemia. The lack of statistically significant evidence to support dietary manipulation of any kind to impede disease progression in AKU is demonstrated.
Collapse
Affiliation(s)
- Shirley Judd
- Department of Nutrition and DieteticsRoyal Liverpool University HospitalLiverpoolUK
| | - Milad Khedr
- Department of Clinical Biochemistry and Metabolic MedicineLiverpool Clinical Laboratories, Royal Liverpool University HospitalLiverpoolUK
| | - Anna M. Milan
- Department of Clinical Biochemistry and Metabolic MedicineLiverpool Clinical Laboratories, Royal Liverpool University HospitalLiverpoolUK
| | - Andrew S. Davison
- Department of Clinical Biochemistry and Metabolic MedicineLiverpool Clinical Laboratories, Royal Liverpool University HospitalLiverpoolUK
| | - Andrew T. Hughes
- Department of Clinical Biochemistry and Metabolic MedicineLiverpool Clinical Laboratories, Royal Liverpool University HospitalLiverpoolUK
| | - Alexander Needham
- Liverpool Cancer Trials UnitUniversity of Liverpool, Block C, Waterhouse BuildingLiverpoolUK
| | - Eftychia E. Psarelli
- Liverpool Cancer Trials UnitUniversity of Liverpool, Block C, Waterhouse BuildingLiverpoolUK
| | - Alan Shenkin
- Department of Clinical Biochemistry and Metabolic MedicineLiverpool Clinical Laboratories, Royal Liverpool University HospitalLiverpoolUK
| | - Lakshiminaryan R. Ranganath
- Department of Clinical Biochemistry and Metabolic MedicineLiverpool Clinical Laboratories, Royal Liverpool University HospitalLiverpoolUK
| |
Collapse
|
6
|
Hughes JH, Wilson PJM, Sutherland H, Judd S, Hughes AT, Milan AM, Jarvis JC, Bou‐Gharios G, Ranganath LR, Gallagher JA. Dietary restriction of tyrosine and phenylalanine lowers tyrosinemia associated with nitisinone therapy of alkaptonuria. J Inherit Metab Dis 2020; 43:259-268. [PMID: 31503358 PMCID: PMC7079096 DOI: 10.1002/jimd.12172] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
Alkaptonuria (AKU) is caused by homogentisate 1,2-dioxygenase deficiency that leads to homogentisic acid (HGA) accumulation, ochronosis and severe osteoarthropathy. Recently, nitisinone treatment, which blocks HGA formation, has been effective in AKU patients. However, a consequence of nitisinone is elevated tyrosine that can cause keratopathy. The effect of tyrosine and phenylalanine dietary restriction was investigated in nitisinone-treated AKU mice, and in an observational study of dietary intervention in AKU patients. Nitisinone-treated AKU mice were fed tyrosine/phenylalanine-free and phenylalanine-free diets with phenylalanine supplementation in drinking water. Tyrosine metabolites were measured pre-nitisinone, post-nitisinone, and after dietary restriction. Subsequently an observational study was undertaken in 10 patients attending the National Alkaptonuria Centre (NAC), with tyrosine >700 μmol/L who had been advised to restrict dietary protein intake and where necessary, to use tyrosine/phenylalanine-free amino acid supplements. Elevated tyrosine (813 μmol/L) was significantly reduced in nitisinone-treated AKU mice fed a tyrosine/phenylalanine-free diet in a dose responsive manner. At 3 days of restriction, tyrosine was 389.3, 274.8, and 144.3 μmol/L with decreasing phenylalanine doses. In contrast, tyrosine was not effectively reduced in mice by a phenylalanine-free diet; at 3 days tyrosine was 757.3, 530.2, and 656.2 μmol/L, with no dose response to phenylalanine supplementation. In NAC patients, tyrosine was significantly reduced (P = .002) when restricting dietary protein alone, and when combined with tyrosine/phenylalanine-free amino acid supplementation; 4 out of 10 patients achieved tyrosine <700 μmol/L. Tyrosine/phenylalanine dietary restriction significantly reduced nitisinone-induced tyrosinemia in mice, with phenylalanine restriction alone proving ineffective. Similarly, protein restriction significantly reduced circulating tyrosine in AKU patients.
Collapse
Affiliation(s)
- Juliette H. Hughes
- Department of Musculoskeletal Biology I, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| | - Peter J. M. Wilson
- Department of Musculoskeletal Biology I, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| | - Hazel Sutherland
- Department of Musculoskeletal Biology I, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| | - Shirley Judd
- Department of Nutrition and DieteticsRoyal Liverpool University Hospital TrustLiverpoolUK
| | - Andrew T. Hughes
- Department of Musculoskeletal Biology I, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
- Liverpool Clinical Laboratories, Department of Clinical Biochemistry and Metabolic MedicineRoyal Liverpool and Broadgreen University Hospitals TrustLiverpoolUK
| | - Anna M. Milan
- Department of Musculoskeletal Biology I, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
- Liverpool Clinical Laboratories, Department of Clinical Biochemistry and Metabolic MedicineRoyal Liverpool and Broadgreen University Hospitals TrustLiverpoolUK
| | - Jonathan C. Jarvis
- School of Sport and Exercise Sciences, Faculty of ScienceLiverpool John Moores UniversityLiverpoolUK
| | - George Bou‐Gharios
- Department of Musculoskeletal Biology I, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| | - Lakshminarayan R. Ranganath
- Department of Musculoskeletal Biology I, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
- Liverpool Clinical Laboratories, Department of Clinical Biochemistry and Metabolic MedicineRoyal Liverpool and Broadgreen University Hospitals TrustLiverpoolUK
| | - James A. Gallagher
- Department of Musculoskeletal Biology I, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
7
|
Davison AS, Hughes AT, Milan AM, Sireau N, Gallagher JA, Ranganath LR. Alkaptonuria – Many questions answered, further challenges beckon. Ann Clin Biochem 2019; 57:106-120. [DOI: 10.1177/0004563219879957] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Alkaptonuria is an iconic rare inherited inborn error of metabolism affecting the tyrosine metabolic pathway, resulting in the accumulation of homogentisic acid in the circulation, and significant excretion in urine. Dating as far back as 1500 BC in the Egyptian mummy Harwa, homogentisic acid was shown to be central to the pathophysiology of alkaptonuria through its deposition in collagenous tissues in a process termed ochronosis. Clinical manifestations occurring as a consequence of this are typically observed from the third decade of life, are lifelong and significantly affect the quality of life. In large supportive and palliative treatment measures are available to patients, including analgesia, physiotherapy and joint replacement. Studying the natural history of alkaptonuria, in a murine model and human subjects, has provided key insights into the biochemical and molecular mechanisms underlying the pathophysiology associated with the disease, and has enabled a better understanding of the common disease osteoarthritis. In the last decade, a major focus has been on an unlicensed disease-modifying therapy called nitisinone. This has been shown to be highly efficacious in reducing homogentisic acid, and it is hoped this will halt ochronosis, thus limiting the clinical complications associated with the disease. A well-documented metabolic consequence of nitisinone therapy is hypertyrosinaemia, the clinical implications of which are uncertain. Recent metabolomic studies have helped understand the wider metabolic consequences of nitisinone therapy.
Collapse
Affiliation(s)
- AS Davison
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool University Hospitals Trust, Liverpool, UK
- Musculoskeletal Biology I, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool Health Partners, Liverpool, UK
| | - AT Hughes
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool University Hospitals Trust, Liverpool, UK
- Musculoskeletal Biology I, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool Health Partners, Liverpool, UK
| | - AM Milan
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool University Hospitals Trust, Liverpool, UK
- Musculoskeletal Biology I, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool Health Partners, Liverpool, UK
| | | | - JA Gallagher
- Musculoskeletal Biology I, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool Health Partners, Liverpool, UK
| | - LR Ranganath
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool University Hospitals Trust, Liverpool, UK
- Musculoskeletal Biology I, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool Health Partners, Liverpool, UK
| |
Collapse
|
8
|
Davison AS, Norman BP, Ross GA, Hughes AT, Khedr M, Milan AM, Gallagher JA, Ranganath LR. Evaluation of the serum metabolome of patients with alkaptonuria before and after two years of treatment with nitisinone using LC-QTOF-MS. JIMD Rep 2019; 48:67-74. [PMID: 31392115 PMCID: PMC6606987 DOI: 10.1002/jmd2.12042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/26/2019] [Accepted: 05/02/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The homogentisic acid-lowering therapy nitisinone is being evaluated for the treatment of alkaptonuria (AKU) at the National Centre for AKU. Beyond hypertyrosinemia, the wider metabolic consequences of its use are largely unknown. The aim of this work was to evaluate the impact of nitisinone on the serum metabolome of patients with AKU after 12 and 24 months of treatment. METHODS Deproteinized serum from 25 patients with AKU (mean age[±SD] 51.1 ± 14.9 years, 12 male) was analyzed using the 1290 Infinity II liquid chromatography system coupled to a 6550 quadrupole time-of-flight mass spectrometry (Agilent, UK). Raw data were processed using a batch targeted feature extraction algorithm and an accurate mass retention time database containing 469 intermediary metabolites (MW 72-785). Matched entities (±10 ppm theoretical accurate mass and ±0.3 minutes retention time window) were filtered based on their frequency and variability (<25% CV) in group quality control samples, and repeated measures statistical significance analysis with Benjamini-Hochberg false discovery rate adjustment was used to assess changes in metabolite abundance. RESULTS Eight metabolites increased in abundance (log2 fold change [FC] 2.1-15.2, P < .05); 7 of 8 entities were related to tyrosine metabolism, and 13 decreased in abundance (log2 FC 1.5-15.5, P < .05); including entities related to tyrosine (n = 2), tryptophan (n = 3), xanthine (n = 2), and citric acid cycle metabolism (n = 2). CONCLUSIONS Evaluation of the serum metabolome of patients with AKU showed a significant difference in the abundance of several metabolites following treatment with nitisinone, including a number that have not been previously reported; several of these were not related to the tyrosine metabolic pathway. SYNOPSIS Nitisinone therapy has a significant impact on several metabolites beyond the tyrosine metabolic pathway, several of which appear to be related to the redox state of the cell.
Collapse
Affiliation(s)
- Andrew S. Davison
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical LaboratoriesRoyal Liverpool University Hospitals TrustLiverpoolUK
- Musculoskeletal Biology I, Institute of Ageing and Chronic DiseaseUniversity of Liverpool, Liverpool Health PartnersLiverpoolUK
| | - Brendan P. Norman
- Musculoskeletal Biology I, Institute of Ageing and Chronic DiseaseUniversity of Liverpool, Liverpool Health PartnersLiverpoolUK
| | | | - Andrew T. Hughes
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical LaboratoriesRoyal Liverpool University Hospitals TrustLiverpoolUK
- Musculoskeletal Biology I, Institute of Ageing and Chronic DiseaseUniversity of Liverpool, Liverpool Health PartnersLiverpoolUK
| | - Milad Khedr
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical LaboratoriesRoyal Liverpool University Hospitals TrustLiverpoolUK
- Musculoskeletal Biology I, Institute of Ageing and Chronic DiseaseUniversity of Liverpool, Liverpool Health PartnersLiverpoolUK
| | - Anna M. Milan
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical LaboratoriesRoyal Liverpool University Hospitals TrustLiverpoolUK
- Musculoskeletal Biology I, Institute of Ageing and Chronic DiseaseUniversity of Liverpool, Liverpool Health PartnersLiverpoolUK
| | - James A. Gallagher
- Musculoskeletal Biology I, Institute of Ageing and Chronic DiseaseUniversity of Liverpool, Liverpool Health PartnersLiverpoolUK
| | - Lakshminarayan R. Ranganath
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical LaboratoriesRoyal Liverpool University Hospitals TrustLiverpoolUK
- Musculoskeletal Biology I, Institute of Ageing and Chronic DiseaseUniversity of Liverpool, Liverpool Health PartnersLiverpoolUK
| |
Collapse
|
9
|
Davison AS, Strittmatter N, Sutherland H, Hughes AT, Hughes J, Bou-Gharios G, Milan AM, Goodwin RJA, Ranganath LR, Gallagher JA. Assessing the effect of nitisinone induced hypertyrosinaemia on monoamine neurotransmitters in brain tissue from a murine model of alkaptonuria using mass spectrometry imaging. Metabolomics 2019; 15:68. [PMID: 31037385 PMCID: PMC6488549 DOI: 10.1007/s11306-019-1531-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/19/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Nitisinone induced hypertyrosinaemia is a concern in patients with Alkaptonuria (AKU). It has been suggested that this may alter neurotransmitter metabolism, specifically dopamine and serotonin. Herein mass spectrometry imaging (MSI) is used for the direct measurement of 2,4-diphenyl-pyranylium tetrafluoroborate (DPP-TFB) derivatives of monoamine neurotransmitters in brain tissue from a murine model of AKU following treatment with nitisinone. METHODS Metabolite changes were assessed using MSI on DPP-TFB derivatised fresh frozen tissue sections directing analysis towards primary amine neurotransmitters. Matched tail bleed plasma samples were analysed using LC-MS/MS. Eighteen BALB/c mice were included in this study: HGD-/- (n = 6, treated with nitisinone-4 mg/L, in drinking water); HGD-/- (n = 6, no treatment) and HGD+/- (n = 6, no treatment). RESULTS Ion intensity and distribution of DPP-TFB derivatives in brain tissue for dopamine, 3-methoxytyramine, noradrenaline, tryptophan, serotonin, and glutamate were not significantly different following treatment with nitisinone in HGD -/- mice, and no significant differences were observed between HGD-/- and HGD+/- mice that received no treatment. Tyrosine (10-fold in both comparisons, p = 0.003; [BALB/c HGD-/- (n = 6) and BALB/c HGD+/- (n = 6) (no treatment) vs. BALB/c HGD-/- (n = 6, treated)] and tyramine (25-fold, p = 0.02; 32-fold, p = 0.02) increased significantly following treatment with nitisinone. Plasma tyrosine and homogentisic acid increased (ninefold, p = < 0.0001) and decreased (ninefold, p = 0.004), respectively in HGD-/- mice treated with nitisinone. CONCLUSIONS Monoamine neurotransmitters in brain tissue from a murine model of AKU did not change following treatment with nitisinone. These findings have significant implications for patients with AKU as they suggest monoamine neurotransmitters are not altered following treatment with nitisinone.
Collapse
Affiliation(s)
- A S Davison
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool University Hospitals Trust, Liverpool, L7 8XP, UK.
- Musculoskeletal Biology I, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool Health Partners, Liverpool, UK.
| | - N Strittmatter
- Pathology, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - H Sutherland
- Musculoskeletal Biology I, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool Health Partners, Liverpool, UK
| | - A T Hughes
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool University Hospitals Trust, Liverpool, L7 8XP, UK
- Musculoskeletal Biology I, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool Health Partners, Liverpool, UK
| | - J Hughes
- Musculoskeletal Biology I, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool Health Partners, Liverpool, UK
| | - G Bou-Gharios
- Musculoskeletal Biology I, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool Health Partners, Liverpool, UK
| | - A M Milan
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool University Hospitals Trust, Liverpool, L7 8XP, UK
- Musculoskeletal Biology I, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool Health Partners, Liverpool, UK
| | - R J A Goodwin
- Pathology, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - L R Ranganath
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool University Hospitals Trust, Liverpool, L7 8XP, UK
- Musculoskeletal Biology I, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool Health Partners, Liverpool, UK
| | - J A Gallagher
- Musculoskeletal Biology I, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool Health Partners, Liverpool, UK
| |
Collapse
|
10
|
Davison AS, Harrold JA, Hughes G, Norman BP, Devine J, Usher J, Hughes AT, Khedr M, Gallagher JA, Milan AM, J C G H, Ranganath LR. Clinical and biochemical assessment of depressive symptoms in patients with Alkaptonuria before and after two years of treatment with nitisinone. Mol Genet Metab 2018; 125:135-143. [PMID: 30049652 DOI: 10.1016/j.ymgme.2018.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Concerns exist over hypertyrosinaemia that is observed following treatment with nitisinone. It has been suggested that tyrosine may compete with tryptophan for uptake into the central nervous system, and or inhibit tryptophan hydroxylase activity reducing serotonin production. At the National Alkaptonuria (AKU) Centre nitisinone is being used off-licence to treat AKU, and there is uncertainty over whether hypertyrosinaemia may alter mood. Herein results from clinical and biochemical assessments of depression in patients with AKU before and after treatment with nitisinone are presented. PATIENTS AND METHODS 63 patients were included pre-nitisinone treatment, of these 39 and 32 patients were followed up 12 and 24 months after treatment. All patients had Becks Depression Inventory-II (BDI-II) assessments (scores can range from 0 to 63, the higher the score the more severe the category of depression), and where possible urinary monoamine neurotransmitter metabolites and serum aromatic amino acids were measured as biochemical markers of depression. RESULTS Mean (±standard deviation) BDI-II scores pre-nitisinone, and after 12 and 24 months were 10.1(9.6); 9.8(10.0) and 10.5(9.9) (p ≥ 0.05, all visits). Paired scores (n = 32), showed a significant increase at 24 months compared to baseline 10.5(9.9) vs. 8.6 (7.8) (p = 0.03). Serum tyrosine increased at least 6-fold following nitisinone (p ≤ 0.0001, all visits), and urinary 3-methoxytyramine (3-MT) increased at 12 and 24 months (p ≤ 0.0001), and 5-hydroxyindole acetic acid (5-HIAA) decreased at 12 months (p = 0.03). CONCLUSIONS BDI-II scores were significantly higher following 24 months of nitisinone therapy in patients that were followed up, however the majority of these patients remained in the minimal category of depression. Serum tyrosine and urinary 3-MT increased significantly following treatment with nitisinone. In contrast urinary 5-HIAA did not decrease consistently over the same period studied. Together these findings suggest nitisinone does not cause depression despite some observed effects on monoamine neurotransmitter metabolism.
Collapse
Affiliation(s)
- A S Davison
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool University Hospitals Trust, Liverpool L7 8XP, UK; Institute of Ageing and Chronic Disease, Musculoskeletal Biology, University of Liverpool, Liverpool L69 3GA, UK.
| | - J A Harrold
- Department of Psychological Sciences, University of Liverpool, Liverpool L69 7ZA, UK
| | - G Hughes
- Department of Psychological Sciences, University of Liverpool, Liverpool L69 7ZA, UK
| | - B P Norman
- Institute of Ageing and Chronic Disease, Musculoskeletal Biology, University of Liverpool, Liverpool L69 3GA, UK
| | - J Devine
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool University Hospitals Trust, Liverpool L7 8XP, UK
| | - J Usher
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool University Hospitals Trust, Liverpool L7 8XP, UK
| | - A T Hughes
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool University Hospitals Trust, Liverpool L7 8XP, UK; Institute of Ageing and Chronic Disease, Musculoskeletal Biology, University of Liverpool, Liverpool L69 3GA, UK
| | - M Khedr
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool University Hospitals Trust, Liverpool L7 8XP, UK; Institute of Ageing and Chronic Disease, Musculoskeletal Biology, University of Liverpool, Liverpool L69 3GA, UK
| | - J A Gallagher
- Institute of Ageing and Chronic Disease, Musculoskeletal Biology, University of Liverpool, Liverpool L69 3GA, UK
| | - A M Milan
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool University Hospitals Trust, Liverpool L7 8XP, UK; Institute of Ageing and Chronic Disease, Musculoskeletal Biology, University of Liverpool, Liverpool L69 3GA, UK
| | - Halford J C G
- Department of Psychological Sciences, University of Liverpool, Liverpool L69 7ZA, UK
| | - L R Ranganath
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool University Hospitals Trust, Liverpool L7 8XP, UK; Institute of Ageing and Chronic Disease, Musculoskeletal Biology, University of Liverpool, Liverpool L69 3GA, UK
| |
Collapse
|