1
|
The Extracellular Electron Transport Pathway Reduces Copper for Sensing by the CopRS Two-Component System under Anaerobic Conditions in Listeria monocytogenes. J Bacteriol 2023; 205:e0039122. [PMID: 36622231 PMCID: PMC9879103 DOI: 10.1128/jb.00391-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The renowned antimicrobial activity of copper stems in part from its ability to undergo redox cycling between Cu1+/2+ oxidation states. Bacteria counter copper toxicity with a network of sensors that often include two-component signaling systems to direct transcriptional responses. As in typical two-component systems, ligand binding by the extracellular domain of the membrane bound copper sensor component leads to phosphorylation and activation of the cognate response regulator transcription factor. In Listeria monocytogenes, the plasmid-borne CopRS two-component system upregulates both copper resistance and lipoprotein remodeling genes upon copper challenge, but the oxidation state of copper bound by CopS is unknown. Herein, we show CopS utilizes a triad of key residues (His-His-Phe) that are predicted to be at the dimerization interface and that are analogous with the Escherichia coli CusS copper sensor to specifically bind Cu1+/Ag1+ and activate CopR transcription. We demonstrate Cu2+ only induces CopRS if first reduced by electron transport systems, as strains lacking menaquinone carriers were unable to respond to Cu2+. The flavin-dependent extracellular electron transport system (EET) was the main mechanism for metal reduction, capable of either generating inducing ligand (Cu2+ to Cu1+) or removing it by precipitation (Ag1+ to Ag0). We show that EET flux is directly proportional to the rate of Cu2+ reduction and that since EET activity is low under oxygenated conditions when a competing respiratory chain is operating, CopRS signaling in turn is activated only under anaerobic conditions. EET metal reduction thus sensitizes cells to copper while providing resistance to silver under anaerobic growth. IMPORTANCE Two-component extracellular copper sensing from the periplasm of Gram-negative bacteria has been well studied, but copper detection at the cell surface of the Gram-positive L. monocytogenes is less understood. Collectively, our results show that EET is most active under anaerobic conditions and reduces Cu2+ and Ag1+ to, respectively, generate or remove the monovalent ligands that directly bind to CopS and lead to the induction of lipoprotein remodeling genes. This reducing activity regulates CopRS signaling and links the upregulation of copper resistance genes with increasing EET flux. Our studies provide insight into how a two-component copper sensing system is integrated into a model monoderm Firmicute to take cues from the electron transport chain activity.
Collapse
|
2
|
Huang W, Zhang J, He Y, Hu C, Cheng S, Zeng H, Zheng M, Yu H, Liu X, Zou Q, Cui R. A cyclic adenosine monophosphate response element-binding protein inhibitor enhances the antibacterial activity of polymyxin B by inhibiting the ATP hydrolyzation activity of CrrB. Front Pharmacol 2022; 13:949869. [PMID: 36147339 PMCID: PMC9485624 DOI: 10.3389/fphar.2022.949869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Abstract
The emergence of polymyxin B (PB) resistant Gram-negative bacteria poses an important clinical and public health threat. Antibiotic adjuvants development is a complementary strategy that fills the gap in new antibiotics. Here, we described the discovery of the enhancement capacity of compound 666-15, previously identified as an inhibitor of cyclic adenosine monophosphate response element-binding protein (CREB), on the activity of PB against Klebsiella pneumoniae in vitro and in vivo. Mechanistic studies showed that this compound reduced the transcription and translation levels of genes related to lipid A modification in the presence of PB. We also identified that 666-15 reduces the ATP hydrolyzation activity of CrrB, and P151L mutation mediates the resistance of bacteria to the enhancement of 666-15. Our results demonstrated the potential of 666-15 in clinical application and support the further development of a PB synergist based on this compound.
Collapse
Affiliation(s)
- Wei Huang
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Department of Clinical Microbiology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yuzhang He
- Department of Pathogen Biology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Chunxia Hu
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Shumin Cheng
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Huan Zeng
- College of Pharmacy, Jinan University, Guangzhou, China
| | | | - Huijuan Yu
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Department of Clinical Microbiology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Xue Liu
- Department of Pathogen Biology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
- *Correspondence: Xue Liu, ; Quanming Zou, ; Ruiqin Cui,
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
- *Correspondence: Xue Liu, ; Quanming Zou, ; Ruiqin Cui,
| | - Ruiqin Cui
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- *Correspondence: Xue Liu, ; Quanming Zou, ; Ruiqin Cui,
| |
Collapse
|
3
|
Zhao L, Guo L, Lu X, Malik WA, Zhang Y, Wang J, Chen X, Wang S, Wang J, Wang D, Ye W. Structure and character analysis of cotton response regulator genes family reveals that GhRR7 responses to draught stress. Biol Res 2022; 55:27. [PMID: 35974357 PMCID: PMC9380331 DOI: 10.1186/s40659-022-00394-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background Cytokinin signal transduction is mediated by a two-component system (TCS). Two-component systems are utilized in plant responses to hormones as well as to biotic and abiotic environmental stimuli. In plants, response regulatory genes (RRs) are one of the main members of the two-component system (TCS). Method From the aspects of gene structure, evolution mode, expression type, regulatory network and gene function, the evolution process and role of RR genes in the evolution of the cotton genome were analyzed. Result A total of 284 RR genes in four cotton species were identified. Including 1049 orthologous/paralogous gene pairs were identified, most of which were whole genome duplication (WGD). The RR genes promoter elements contain phytohormone responses and abiotic or biotic stress-related cis-elements. Expression analysis showed that RR genes family may be negatively regulate and involved in salt stress and drought stress in plants. Protein regulatory network analysis showed that RR family proteins are involved in regulating the DNA-binding transcription factor activity (COG5641) pathway and HP kinase pathways. VIGS analysis showed that the GhRR7 gene may be in the same regulatory pathway as GhAHP5 and GhPHYB, ultimately negatively regulating cotton drought stress by regulating POD, SOD, CAT, H2O2 and other reactive oxygen removal systems. Conclusion This study is the first to gain insight into RR gene members in cotton. Our research lays the foundation for discovering the genes related to drought and salt tolerance and creating new cotton germplasm materials for drought and salt tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-022-00394-2.
Collapse
Affiliation(s)
- Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Waqar Afzal Malik
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Jing Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China.
| |
Collapse
|
4
|
Pallegar P, Canuti M, Langille E, Peña-Castillo L, Lang AS. A Two-Component System Acquired by Horizontal Gene Transfer Modulates Gene Transfer and Motility via Cyclic Dimeric GMP. J Mol Biol 2020; 432:4840-4855. [PMID: 32634380 DOI: 10.1016/j.jmb.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/08/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
Bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is an important intracellular signaling molecule that affects diverse physiological processes in bacteria. The intracellular levels of c-di-GMP are controlled by proteins acting as diguanylate cyclase (DGC) and phosphodiesterase (PDE) enzymes that synthesize and degrade c-di-GMP, respectively. In the alphaproteobacterium Rhodobacter capsulatus, flagellar motility and gene exchange via production of the gene transfer agent RcGTA are regulated by c-di-GMP. One of the R. capsulatus proteins involved in this regulation is Rcc00620, which contains an N-terminal two-component system response regulator receiver (REC) domain and C-terminal DGC and PDE domains. We demonstrate that the enzymatic activity of Rcc00620 is regulated through the phosphorylation status of its REC domain, which is controlled by a cognate histidine kinase protein, Rcc00621. In this system, the phosphorylated form of Rcc00620 is active as a PDE enzyme and stimulates gene transfer and motility. In addition, we discovered that the rcc00620 and rcc00621 genes are present in only one lineage within the genus Rhodobacter and were acquired via horizontal gene transfer from a distantly related alphaproteobacterium in the order Sphingomonadales. Therefore, a horizontally acquired regulatory system regulates gene transfer in the recipient organism.
Collapse
Affiliation(s)
- Purvikalyan Pallegar
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Marta Canuti
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Evan Langille
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada.
| | - Lourdes Peña-Castillo
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada; Department of Computer Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada.
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
5
|
Qing XY, Steenackers H, Venken T, De Maeyer M, Voet A. Computational Studies of the Active and Inactive Regulatory Domains of Response Regulator PhoP Using Molecular Dynamics Simulations. Mol Inform 2017; 36. [PMID: 28598557 DOI: 10.1002/minf.201700031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/30/2017] [Indexed: 12/25/2022]
Abstract
The response regulator PhoP is part of the PhoP/PhoQ two-component system, which is responsible for regulating the expression of multiple genes involved in controlling virulence, biofilm formation, and resistance to antimicrobial peptides. Therefore, modulating the transcriptional function of the PhoP protein is a promising strategy for developing new antimicrobial agents. There is evidence suggesting that phosphorylation-mediated dimerization in the regulatory domain of PhoP is essential for its transcriptional function. Disruption or stabilization of protein-protein interactions at the dimerization interface may inhibit or enhance the expression of PhoP-dependent genes. In this study, we performed molecular dynamics simulations on the active and inactive dimers and monomers of the PhoP regulatory domains, followed by pocket-detecting screenings and a quantitative hot-spot analysis in order to assess the druggability of the protein. Consistent with prior hypothesis, the calculation of the binding free energy shows that phosphorylation enhances dimerization of PhoP. Furthermore, we have identified two different putative binding sites at the dimerization active site (the α4-β5-α5 face) with energetic "hot-spot" areas, which could be used to search for modulators of protein-protein interactions. This study delivers insight into the dynamics and druggability of the dimerization interface of the PhoP regulatory domain, and may serve as a basis for the rational identification of new antimicrobial drugs.
Collapse
Affiliation(s)
- Xiao-Yu Qing
- Laboratory for Biomolecular Modelling, and Laboratory for Biomolecular Modelling and design, the Chemistry Department, KULeuven, Celestijnenlaan 200G-bus2403, Heverlee, Belgium
| | - Hans Steenackers
- Centre of Microbial and Plant Genetics, KULeuven, Kasteelpark Arenberg 20-bus2460, Belgium
| | - Tom Venken
- Flemish Institute for Technological Research, VITO, Boeretang 200, 2400, MOL, Belgium
| | - Marc De Maeyer
- Laboratory for Biomolecular Modelling, and Laboratory for Biomolecular Modelling and design, the Chemistry Department, KULeuven, Celestijnenlaan 200G-bus2403, Heverlee, Belgium
| | - Arnout Voet
- Laboratory for Biomolecular Modelling, and Laboratory for Biomolecular Modelling and design, the Chemistry Department, KULeuven, Celestijnenlaan 200G-bus2403, Heverlee, Belgium
| |
Collapse
|
6
|
Bem AE, Velikova N, Pellicer MT, Baarlen PV, Marina A, Wells JM. Bacterial histidine kinases as novel antibacterial drug targets. ACS Chem Biol 2015; 10:213-24. [PMID: 25436989 DOI: 10.1021/cb5007135] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bacterial histidine kinases (HKs) are promising targets for novel antibacterials. Bacterial HKs are part of bacterial two-component systems (TCSs), the main signal transduction pathways in bacteria, regulating various processes including virulence, secretion systems and antibiotic resistance. In this review, we discuss the biological importance of TCSs and bacterial HKs for the discovery of novel antibacterials, as well as published TCS and HK inhibitors that can be used as a starting point for structure-based approaches to develop novel antibacterials.
Collapse
Affiliation(s)
- Agnieszka E. Bem
- Host−Microbe
Interactomics, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Nadya Velikova
- Instituto
de Biomedicina
de Valencia-Consejo Superior de Investigaciones Cientificas (IBV-CSIC), Jaume Roig 11, 46010-Valencia, Spain
| | - M. Teresa Pellicer
- R&D Department Interquim, Ferrer HealthTech, Joan Buscalla 10, 08137-Sant Cugat del Valles Barcelona, Spain
| | - Peter van Baarlen
- Host−Microbe
Interactomics, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Alberto Marina
- Instituto
de Biomedicina
de Valencia-Consejo Superior de Investigaciones Cientificas (IBV-CSIC), Jaume Roig 11, 46010-Valencia, Spain
- Centro de Investigacion
Biomedica en Red de Enfermedades Raras (CIBER-ISCIII), Jaume Roig 11, 46010-Valencia, Spain
| | - Jerry M. Wells
- Host−Microbe
Interactomics, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
7
|
ROKA AJI OKTIRA, NURKARTIKA PASCAPURNAMA DYSHELLY, PRATAMA FENRYCO, IHSANAWATI IHSANAWATI, RAMDHANI MOEIS MAELITA, ARIFIN GIRI-RACHMAN ERNAWATI. Cloning, Overexpression, and Purification of PhoR CytoplasmicDomain Protein from Mycobacterium tuberculosis strain H37Rv. MICROBIOLOGY INDONESIA 2014. [DOI: 10.5454/mi.8.4.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Zhang Z, Liu Q, Hendrickson WA. Crystal structures of apparent saccharide sensors from histidine kinase receptors prevalent in a human gut symbiont. FEBS J 2014; 281:4263-79. [PMID: 24995510 DOI: 10.1111/febs.12904] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED The adult human gut is a complicated ecosystem in which host-bacterium symbiosis plays an important role. Bacteroides thetaiotaomicron is a predominant member of the gut microflora, providing the human digestive tract with a large number of glycolytic enzymes. Expression of many of these enzymes appears to be controlled by histidine kinase receptors that are fused into unusual hybrid two-component systems that share homologous periplasmic sensor domains. These sensor domains belong to the third most populated (HK3) family based on a previous unpublished bioinformatics analysis of predicted histidine kinase sensors. Here, we present the crystal structures of two sensor domains representative of the HK3 family. Each sensor is folded into three domains: two-seven-bladed β-propeller domains and one β-sandwich domain. Both sensors form dimers in crystals, and one sensor appears to be physiologically relevant. The folding characteristics in the individual domains, the domain organization, and the oligomeric architecture are all unique to HK3 sensors. Sequence analysis of the HK3 sensors indicates that these sensor domains are shared among other signaling molecules, implying combinatorial molecular evolution. DATABASE The structural data for the crystallographic results for HK3 BT4673S and HK3 BT3049S have been deposited in the Protein Data Bank under accession numbers 3OTT and 3V9F, respectively. STRUCTURED DIGITAL ABSTRACT HK3BT3049S and HK3BT3049S bind by x-ray crystallography (View interaction) HK3BT3049S and HK3BT3049S bind by molecular sieving (View interaction) HK3BT3049S and HK3BT3049S bind by cosedimentation through density gradient (View interaction) HK3BT4673s and HK3BT4673s bind by cosedimentation through density gradient (View interaction) HK3BT4673s and HK3BT4673s bind by molecular sieving (View interaction).
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
9
|
Liu Z, Zhang M, Kong L, Lv Y, Zou M, Lu G, Cao J, Yu X. Genome-wide identification, phylogeny, duplication, and expression analyses of two-component system genes in Chinese cabbage (Brassica rapa ssp. pekinensis). DNA Res 2014; 21:379-96. [PMID: 24585003 PMCID: PMC4131832 DOI: 10.1093/dnares/dsu004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 01/20/2014] [Indexed: 12/27/2022] Open
Abstract
In plants, a two component system (TCS) composed of sensor histidine kinases (HKs), histidine phosphotransfer proteins (HPs), and response regulators (RRs) has been employed in cytokinin signal transduction. A TCS exhibits important functions in diverse biological processes, including plant growth, development, and response to environmental stimuli. Conducting an exhaustive search of the Chinese cabbage genome, a total of 20 HK(L) (11 HKs and 9 HKLs), 8 HP (7 authentic and 1 pseudo), and 57 RR (21 Type-A, 17 Type-B, 4 Type-C, and 15 pseudo) proteins were identified. The structures, conserved domains, and phylogenetic relationships of these protein-coding genes were analysed in detail. The duplications, evolutionary patterns, and divergence of the TCS genes were investigated. The transcription levels of TCS genes in various tissues, organs, and developmental stages were further analysed to obtain information of the functions of these genes. Cytokinin-related binding elements were found in the putative promoter regions of Type-A BrRR genes. Furthermore, gene expression patterns to adverse environmental stresses (drought and high salinity) and exogenous phytohormones (tZ and ABA) were investigated. Numerous stress-responsive candidate genes were obtained. Our systematic analyses provided insights into the characterization of the TCS genes in Chinese cabbage and basis for further functional studies of such genes.
Collapse
Affiliation(s)
- Zhenning Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China Laboratory of Horticultural Plant Growth and Quality Regulation, Ministry of Agriculture, Hangzhou 310058, PR China
| | - Mei Zhang
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China Laboratory of Horticultural Plant Growth and Quality Regulation, Ministry of Agriculture, Hangzhou 310058, PR China
| | - Lijun Kong
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China Laboratory of Horticultural Plant Growth and Quality Regulation, Ministry of Agriculture, Hangzhou 310058, PR China
| | - Yanxia Lv
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China Laboratory of Horticultural Plant Growth and Quality Regulation, Ministry of Agriculture, Hangzhou 310058, PR China
| | - Minghua Zou
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China Laboratory of Horticultural Plant Growth and Quality Regulation, Ministry of Agriculture, Hangzhou 310058, PR China
| | - Gang Lu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China Laboratory of Horticultural Plant Growth and Quality Regulation, Ministry of Agriculture, Hangzhou 310058, PR China
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China Laboratory of Horticultural Plant Growth and Quality Regulation, Ministry of Agriculture, Hangzhou 310058, PR China
| | - Xiaolin Yu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China Laboratory of Horticultural Plant Growth and Quality Regulation, Ministry of Agriculture, Hangzhou 310058, PR China
| |
Collapse
|
10
|
Krueger B, Friedrich T, Förster F, Bernhardt J, Gross R, Dandekar T. Different evolutionary modifications as a guide to rewire two-component systems. Bioinform Biol Insights 2012; 6:97-128. [PMID: 22586357 PMCID: PMC3348925 DOI: 10.4137/bbi.s9356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Two-component systems (TCS) are short signalling pathways generally occurring in prokaryotes. They frequently regulate prokaryotic stimulus responses and thus are also of interest for engineering in biotechnology and synthetic biology. The aim of this study is to better understand and describe rewiring of TCS while investigating different evolutionary scenarios. Based on large-scale screens of TCS in different organisms, this study gives detailed data, concrete alignments, and structure analysis on three general modification scenarios, where TCS were rewired for new responses and functions: (i) exchanges in the sequence within single TCS domains, (ii) exchange of whole TCS domains; (iii) addition of new components modulating TCS function. As a result, the replacement of stimulus and promotor cassettes to rewire TCS is well defined exploiting the alignments given here. The diverged TCS examples are non-trivial and the design is challenging. Designed connector proteins may also be useful to modify TCS in selected cases.
Collapse
Affiliation(s)
- Beate Krueger
- Dept of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Pagliarani G, Paris R, Iorio AR, Tartarini S, Del Duca S, Arens P, Peters S, van de Weg E. Genomic organisation of the Mal d 1 gene cluster on linkage group 16 in apple. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2012; 29:759-778. [PMID: 22408383 PMCID: PMC3285766 DOI: 10.1007/s11032-011-9588-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 05/14/2011] [Indexed: 05/29/2023]
Abstract
European populations exhibit progressive sensitisation to food allergens, and apples are one of the foods for which sensitisation is observed most frequently. Apple cultivars vary greatly in their allergenic characteristics, and a better understanding of the genetic basis of low allergenicity may therefore allow allergic individuals to increase their fruit intake. Mal d 1 is considered to be a major apple allergen, and this protein is encoded by the most complex allergen gene family. Not all Mal d 1 members are likely to be involved in allergenicity. Therefore, additional knowledge about the existence and characteristics of the different Mal d 1 genes is required. In the present study, we investigated the genomic organisation of the Mal d 1 gene cluster in linkage group 16 of apple through the sequencing of two bacterial artificial chromosome clones. The results provided new information on the composition of this family with respect to the number and orientation of functional and pseudogenes and their physical distances. The results were compared with the apple and peach genome sequences that have recently been made available. A broad analysis of the whole apple genome revealed the presence of new genes in this family, and a complete list of the observed Mal d 1 genes is supplied. Thus, this study provides an important contribution towards a better understanding of the genetics of the Mal d 1 family and establishes the basis for further research on allelic diversity among cultivars in relation to variation in allergenicity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-011-9588-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giulia Pagliarani
- Department of Fruit Tree and Woody Plant Sciences, University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
- Plant Breeding, Plant Research International, Wageningen University and Research Center, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Roberta Paris
- Department of Fruit Tree and Woody Plant Sciences, University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Anna Rosa Iorio
- Department of Biology es, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Stefano Tartarini
- Department of Fruit Tree and Woody Plant Sciences, University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Stefano Del Duca
- Department of Biology es, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Paul Arens
- Plant Breeding, Plant Research International, Wageningen University and Research Center, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Sander Peters
- Greenomics, Plant Research International, Wageningen University and Research Center, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Eric van de Weg
- Plant Breeding, Plant Research International, Wageningen University and Research Center, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
12
|
Evolutionary Characteristics of Bacterial Two-Component Systems. EVOLUTIONARY SYSTEMS BIOLOGY 2012; 751:121-37. [DOI: 10.1007/978-1-4614-3567-9_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Zhang H, Du H, Ji X, Ni B, Mao L, Xu S, Sheng X, Xu H, Huang X. OmpR may regulate the putative YehU/YehT two-component system in Salmonella enterica serovar Typhi under hypotonic growth condition. Curr Microbiol 2011; 64:283-9. [PMID: 22179129 DOI: 10.1007/s00284-011-0066-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 12/02/2011] [Indexed: 02/04/2023]
Abstract
Decreased expression (twofold) of a putative yehUTS operon of which yehUT encodes a putative YehU/YehT two-component system in the ompR mutant from Salmonella enterica serovar Typhi (S. Typhi) GIFU10007 under hypotonic growth condition was observed by qRT-PCR. Purified recombinant protein OmpR(His6) of GIFU10007 was shown to bind the upstream region of the yehU gene by the gel-shift assay. In addition, the yehT deletion mutant (ΔyehT) displayed differential expression (twofold or higher) of 26 genes under the condition by the DNA microarray analysis. Altogether, OmpR might regulate the YehUT system in S. Typhi under hypotonic growth condition.
Collapse
Affiliation(s)
- Haifang Zhang
- Department of Biochemistry and Molecular Biology, School of Medical Technology, Jiangsu University, Zhenjiang, Jiangsu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Martinez AF, Muenke M, Arcos-Burgos M. From the black widow spider to human behavior: Latrophilins, a relatively unknown class of G protein-coupled receptors, are implicated in psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:1-10. [PMID: 21184579 PMCID: PMC4101183 DOI: 10.1002/ajmg.b.31137] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 09/28/2010] [Indexed: 12/24/2022]
Abstract
The findings of a recent study associate LPHN3, a member of the latrophilin family, with an increased risk of developing attention deficit/hyperactivity disorder (ADHD), the most common psychiatric disorder in childhood and adolescence. Latrophilins comprise a new family of G protein-coupled receptors of unknown native physiological function that mediate the neurotoxic effects of α-latrotoxin, a potent toxin found in black widow spider venom. This receptor-toxin interaction has helped to elucidate the mechanistic aspects of neurotransmitter and hormone release in vertebrates. Such unprecedented discovery points to a new direction in the assessment of ADHD and suggest that further study of this receptor family may provide novel insights into the etiology and treatment of ADHD and other related psychiatric conditions.
Collapse
Affiliation(s)
| | | | - Mauricio Arcos-Burgos
- Correspondence to: Dr. Mauricio Arcos-Burgos, M.D., Ph.D., National Human Genome Research Institute, National Institutes of Health, 35 Convent Drive, MSC 3717, Building 35, Room 1B209, Bethesda, MD 20892.
| |
Collapse
|
15
|
Guarnieri MT, Blagg BSJ, Zhao R. A high-throughput TNP-ATP displacement assay for screening inhibitors of ATP-binding in bacterial histidine kinases. Assay Drug Dev Technol 2010; 9:174-83. [PMID: 21050069 DOI: 10.1089/adt.2010.0289] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacterial histidine kinases (HK) are members of the GHKL superfamily, which share a unique adenosine triphosphate (ATP)-binding Bergerat fold. Our previous studies have shown that Gyrase, Hsp90, MutL (GHL) inhibitors bind to the ATP-binding pocket of HK and may provide lead compounds for the design of novel antibiotics targeting these kinases. In this article, we developed a competition assay using the fluorescent ATP analog, 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate. The method can be used for high-throughput screening of compound libraries targeting HKs or other ATP-binding proteins. We utilized the assay to screen a library of GHL inhibitors targeting the bacterial HK PhoQ, and discuss the applications of the 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate competition assay beyond GHKL inhibitor screening.
Collapse
Affiliation(s)
- Michael T Guarnieri
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, 80045, USA
| | | | | |
Collapse
|
16
|
Abstract
The Haemophilus ducreyi 35000HP genome encodes a homolog of the CpxRA two-component cell envelope stress response system originally characterized in Escherichia coli. CpxR, the cytoplasmic response regulator, was shown previously to be involved in repression of the expression of the lspB-lspA2 operon (M. Labandeira-Rey, J. R. Mock, and E. J. Hansen, Infect. Immun. 77:3402-3411, 2009). In the present study, the H. ducreyi CpxR and CpxA proteins were shown to closely resemble those of other well-studied bacterial species. A cpxA deletion mutant and a CpxR-overexpressing strain were used to explore the extent of the CpxRA regulon. DNA microarray and real-time reverse transcriptase (RT) PCR analyses indicated several potential regulatory targets for the H. ducreyi CpxRA two-component regulatory system. Electrophoretic mobility shift assays (EMSAs) were used to prove that H. ducreyi CpxR interacted with the promoter regions of genes encoding both known and putative virulence factors of H. ducreyi, including the lspB-lspA2 operon, the flp operon, and dsrA. Interestingly, the use of EMSAs also indicated that H. ducreyi CpxR did not bind to the promoter regions of several genes predicted to encode factors involved in the cell envelope stress response. Taken together, these data suggest that the CpxRA system in H. ducreyi, in contrast to that in E. coli, may be involved primarily in controlling expression of genes not involved in the cell envelope stress response.
Collapse
|
17
|
Structural characterization of the predominant family of histidine kinase sensor domains. J Mol Biol 2010; 400:335-53. [PMID: 20435045 DOI: 10.1016/j.jmb.2010.04.049] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 04/22/2010] [Accepted: 04/24/2010] [Indexed: 02/01/2023]
Abstract
Histidine kinase (HK) receptors are used ubiquitously by bacteria to monitor environmental changes, and they are also prevalent in plants, fungi, and other protists. Typical HK receptors have an extracellular sensor portion that detects a signal, usually a chemical ligand, and an intracellular transmitter portion that includes both the kinase domain itself and the site for histidine phosphorylation. While kinase domains are highly conserved, sensor domains are diverse. HK receptors function as dimers, but the molecular mechanism for signal transduction across cell membranes remains obscure. In this study, eight crystal structures were determined from five sensor domains representative of the most populated family, family HK1, found in a bioinformatic analysis of predicted sensor domains from transmembrane HKs. Each structure contains an inserted repeat of PhoQ/DcuS/CitA (PDC) domains, and similarity between sequence and structure is correlated across these and other double-PDC sensor proteins. Three of the five sensors crystallize as dimers that appear to be physiologically relevant, and comparisons between ligated structures and apo-state structures provide insights into signal transmission. Some HK1 family proteins prove to be sensors for chemotaxis proteins or diguanylate cyclase receptors, implying a combinatorial molecular evolution.
Collapse
|
18
|
Stewart RC. Protein histidine kinases: assembly of active sites and their regulation in signaling pathways. Curr Opin Microbiol 2010; 13:133-41. [PMID: 20117042 PMCID: PMC2847664 DOI: 10.1016/j.mib.2009.12.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 12/23/2009] [Accepted: 12/29/2009] [Indexed: 10/19/2022]
Abstract
Protein histidine kinases (PHKs) function in Two Component Signaling pathways utilized extensively by bacteria and archaea. Many PHKs participate in three distinct, but interrelated signaling reactions: autophoshorylation, phosphotransfer (to a partner Response Regulator (RR) protein), and dephosphorylation of this RR. Detailed biochemical and structural characterization of several PHKs has revealed how the domains of these proteins can interact to assemble the three active sites that promote the necessary chemistry and how these domain interactions might be regulated in response to sensory input: the relative orientation of helices in the PHK dimerization domain can reorient, via cogwheeling (rotation) and kinking (bending), to effect changes in PHK activities that probably involve sequestration/release of the PHK catalytic domain by the dimerization domain.
Collapse
Affiliation(s)
- Richard C Stewart
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
19
|
Structure of PAS-Linked Histidine Kinase and the Response Regulator Complex. Structure 2009; 17:1333-44. [DOI: 10.1016/j.str.2009.07.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 07/22/2009] [Accepted: 07/29/2009] [Indexed: 11/24/2022]
|
20
|
Krallinger M, Izarzugaza JMG, Rodriguez-Penagos C, Valencia A. Extraction of human kinase mutations from literature, databases and genotyping studies. BMC Bioinformatics 2009; 10 Suppl 8:S1. [PMID: 19758464 PMCID: PMC2745582 DOI: 10.1186/1471-2105-10-s8-s1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background There is a considerable interest in characterizing the biological role of specific protein residue substitutions through mutagenesis experiments. Additionally, recent efforts related to the detection of disease-associated SNPs motivated both the manual annotation, as well as the automatic extraction, of naturally occurring sequence variations from the literature, especially for protein families that play a significant role in signaling processes such as kinases. Systematic integration and comparison of kinase mutation information from multiple sources, covering literature, manual annotation databases and large-scale experiments can result in a more comprehensive view of functional, structural and disease associated aspects of protein sequence variants. Previously published mutation extraction approaches did not sufficiently distinguish between two fundamentally different variation origin categories, namely natural occurring and induced mutations generated through in vitro experiments. Results We present a literature mining pipeline for the automatic extraction and disambiguation of single-point mutation mentions from both abstracts as well as full text articles, followed by a sequence validation check to link mutations to their corresponding kinase protein sequences. Each mutation is scored according to whether it corresponds to an induced mutation or a natural sequence variant. We were able to provide direct literature links for a considerable fraction of previously annotated kinase mutations, enabling thus more efficient interpretation of their biological characterization and experimental context. In order to test the capabilities of the presented pipeline, the mutations in the protein kinase domain of the kinase family were analyzed. Using our literature extraction system, we were able to recover a total of 643 mutations-protein associations from PubMed abstracts and 6,970 from a large collection of full text articles. When compared to state-of-the-art annotation databases and high throughput genotyping studies, the mutation mentions extracted from the literature overlap to a good extent with the existing knowledgebases, whereas the remaining mentions suggest new mutation records that were not previously annotated in the databases. Conclusion Using the proposed residue disambiguation and classification approach, we were able to differentiate between natural variant and mutagenesis types of mutations with an accuracy of 93.88. The resulting system is useful for constructing a Gold Standard set of mutations extracted from the literature by human experts with minimal manual curation effort, providing direct pointers to relevant evidence sentences. Our system is able to recover mutations from the literature that are not present in state-of-the-art databases. Human expert manual validation of a subset of the literature extracted mutations conducted on 100 mutations from PubMed abstracts highlights that almost three quarters (72%) of the extracted mutations turned out to be correct, and more than half of these had not been previously annotated in databases.
Collapse
|