1
|
Ang HY, Toong D, Chow WS, Seisilya W, Wu W, Wong P, Venkatraman SS, Foin N, Huang Y. Radiopaque Fully Degradable Nanocomposites for Coronary Stents. Sci Rep 2018; 8:17409. [PMID: 30479353 PMCID: PMC6258706 DOI: 10.1038/s41598-018-35663-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
Bioresorbable scaffolds (BRS) were introduced to overcome limitations of current metallic drug-eluting stents and poly-L-lactide (PLLA) has been used in the fabrication of BRS due to its biodegradability and biocompatibility. However, such polymers have weaker mechanical properties as compared to metals, limiting their use in BRS. We hypothesized that nanofillers can be used to enhance the mechanical properties considerably in PLLA. To this end, polymer-matrix composites consisting of PLLA reinforced with 5-20 wt% barium sulfate (BaSO4) nanofillers as a potential BRS material was evaluated. Stearic-acid (SA) modified BaSO4 nanofillers were used to examine the effect of functionalization. Rigid nanofillers improved the tensile modulus and strength of PLLA (60% and 110% respectively), while the use of SA-BaSO4 caused a significant increase (~110%) in the elongation at break. Enhancement in mechanical properties is attributed to functionalization which decreased the agglomeration of the nanofillers and improved dispersion. The nanocomposites were also radiopaque. Finite element analysis (FEA) showed that scaffold fabricated from the novel nanocomposite material has improved scaffolding ability, specifically that the strut thickness could be decreased compared to the conventional PLLA scaffold. In conclusion, BaSO4/PLLA-based nanocomposites could potentially be used as materials for BRS with improved mechanical and radiopaque properties.
Collapse
Affiliation(s)
- Hui Ying Ang
- National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore, Singapore
| | - Daniel Toong
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore, Singapore
| | - Wei Shoon Chow
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore, Singapore
| | - Welly Seisilya
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore, Singapore
| | - Wei Wu
- Department of Mechanical Engineering, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Philip Wong
- National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore, Singapore
| | - Subbu S Venkatraman
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore, Singapore
| | - Nicolas Foin
- National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore, Singapore
- Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
| | - Yingying Huang
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore, Singapore.
| |
Collapse
|
2
|
Luo Q, Liu X, Li Z, Huang C, Zhang W, Meng J, Chang Z, Hua Z. Degradation model of bioabsorbable cardiovascular stents. PLoS One 2014; 9:e110278. [PMID: 25365310 PMCID: PMC4217724 DOI: 10.1371/journal.pone.0110278] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/15/2014] [Indexed: 12/03/2022] Open
Abstract
This study established a numerical model to investigate the degradation mechanism and behavior of bioabsorbable cardiovascular stents. In order to generate the constitutive degradation material model, the degradation characteristics were characterized with user-defined field variables. The radial strength bench test and analysis were used to verify the material model. In order to validate the numerical degradation model, in vitro bench test and in vivo implantation studies were conducted under physiological and normal conditions. The results showed that six months of degradation had not influenced the thermodynamic properties and mechanical integrity of the stent while the molecular weight of the stents implanted in the in vivo and in vitro models had decreased to 61.8% and 68.5% respectively after six month's implantation. It was also found that the degradation rate, critical locations and changes in diameter of the stents in the numerical model were in good consistency in both in vivo and in vitro studies. It implies that the numerical degradation model could provide useful physical insights and prediction of the stent degradation behavior and evaluate, to some extent, the in-vivo performance of the stent. This model could eventually be used for design and optimization of bioabsorbable stent.
Collapse
Affiliation(s)
- Qiyi Luo
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai MicroPort Medical (Group) Co., Ltd., Shanghai, China
- * E-mail:
| | - Xiangkun Liu
- Shanghai MicroPort Medical (Group) Co., Ltd., Shanghai, China
| | - Zhonghua Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai MicroPort Medical (Group) Co., Ltd., Shanghai, China
| | - Chubo Huang
- Shanghai MicroPort Medical (Group) Co., Ltd., Shanghai, China
| | - Wen Zhang
- Shanghai MicroPort Medical (Group) Co., Ltd., Shanghai, China
| | - Juan Meng
- Shanghai MicroPort Medical (Group) Co., Ltd., Shanghai, China
| | - Zhaohua Chang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai MicroPort Medical (Group) Co., Ltd., Shanghai, China
| | - Zezhao Hua
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai MicroPort Medical (Group) Co., Ltd., Shanghai, China
| |
Collapse
|
3
|
Moore JE, Soares JS, Rajagopal KR. Biodegradable Stents: Biomechanical Modeling Challenges and Opportunities. Cardiovasc Eng Technol 2010. [DOI: 10.1007/s13239-010-0005-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|