1
|
Connors KA, Arndt D, Rawlings JM, Brun Hansen AM, Lam MW, Sanderson H, Belanger SE. Environmental hazard of cationic polymers relevant in personal and consumer care products: A critical review. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:312-325. [PMID: 35649733 DOI: 10.1002/ieam.4642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/13/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Historically, polymers have been excluded from registration and evaluation under the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) program, the European chemical management program. Recently, interest has increased to include polymers. A tiered registration system has been envisioned and would begin with classes of polymers of greater interest based on certain properties. Cationic polymers are one such class. There is a pressing need to understand the quality and limitations of historical cationic polymer studies and to identify key sources of uncertainty in environmental hazard assessments so we can move toward scientifically robust analyses. To that end, we performed a critical review of the existing cationic polymer environmental effects literature to evaluate polymer characterization and test methodologies to understand how these parameters may affect test interpretation. The relationship between physicochemical parameters, acute and chronic toxicity, and relative trophic level sensitivity were explored. To advance our understanding of the environmental hazard and subsequent risk characterization of cationic polymers, there is a clear need for a consistent testing approach as many polymers are characterized as difficult-to-test substances. Experimental parameters such as dissolved organic carbon and solution renewal approaches can alter cationic polymer bioavailability and toxicity. It is recommended that OECD TG 23 "Aqueous-Phase Aquatic Toxicity Testing of Difficult Test Substances" testing considerations be applied when conducting environmental toxicity assays with cationic polymers. Integr Environ Assess Manag 2023;19:312-325. © 2021 SETAC.
Collapse
Affiliation(s)
| | - Devrah Arndt
- The Procter and Gamble Company, Cincinnati, OH, USA
| | | | | | - Monica W Lam
- The Procter and Gamble Company, Cincinnati, OH, USA
| | | | | |
Collapse
|
2
|
Rawlings JM, Belanger SE, Connors KA, Karb MJ, Thomas JB, Roush KS, Sanderson H. Understanding Ecotoxicological Responses of Fish Embryos and Gill Cells to Cationic Polymers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2259-2272. [PMID: 35703088 DOI: 10.1002/etc.5410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/18/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Cationic polymers are considered by the scientific and regulatory communities as a group of greater interest amongst the polymers in commerce. As a category, relatively little hazard information is available in the public literature. Very few examples exist of published, high-quality polymer characterization and quantification of exposure. In the present study we describe a series of fish embryo toxicity (FET) and fish gill cytotoxicity assays used to establish a baseline understanding of several representative polyquaternium categories (PQ-6, PQ-10, PQ-16) in animal alternative models, accompanied by high-quality analytical characterization. Materials were chosen to encompass a range of molecular weights and charge densities to determine the influence of test material characteristics on toxicity. Both chorionated and dechorionated FET assays were generally similar to published acute fish toxicity data. Toxicity was correlated with cationic polymer charge density, and not with molecular weight, and was a combination of physical effects and likely toxicity at the site of action. Toxicity could be ameliorated by humic acid in a dose-dependent manner. Fish gill cytotoxicity results were orders of magnitude less sensitive than FET test responses. Environ Toxicol Chem 2022;41:2259-2272. © 2022 SETAC.
Collapse
Affiliation(s)
- Jane M Rawlings
- Global Product Stewardship, Environmental Stewardship and Sustainability, The Procter & Gamble Company, Cincinnati, Ohio, USA
| | - Scott E Belanger
- Global Product Stewardship, Environmental Stewardship and Sustainability, The Procter & Gamble Company, Cincinnati, Ohio, USA
| | - Kristin A Connors
- Global Product Stewardship, Environmental Stewardship and Sustainability, The Procter & Gamble Company, Cincinnati, Ohio, USA
| | - Mike J Karb
- Corporate Functions Analytical, The Procter & Gamble Company, Cincinnati, Ohio, USA
| | - Jacqueline B Thomas
- Corporate Functions Analytical, The Procter & Gamble Company, Cincinnati, Ohio, USA
| | - Kyle S Roush
- Global Product Stewardship, Environmental Stewardship and Sustainability, The Procter & Gamble Company, Cincinnati, Ohio, USA
| | - Hans Sanderson
- Department of Environmental Science, Section for Toxicology and Chemistry, Aarhus University, Roskilde, Denmark
| |
Collapse
|
3
|
Johann S, Weichert FG, Schröer L, Stratemann L, Kämpfer C, Seiler TB, Heger S, Töpel A, Sassmann T, Pich A, Jakob F, Schwaneberg U, Stoffels P, Philipp M, Terfrüchte M, Loeschcke A, Schipper K, Feldbrügge M, Ihling N, Büchs J, Bator I, Tiso T, Blank LM, Roß-Nickoll M, Hollert H. A plea for the integration of Green Toxicology in sustainable bioeconomy strategies - Biosurfactants and microgel-based pesticide release systems as examples. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127800. [PMID: 34865895 DOI: 10.1016/j.jhazmat.2021.127800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
A key aspect of the transformation of the economic sector towards a sustainable bioeconomy is the development of environmentally friendly alternatives for hitherto used chemicals, which have negative impacts on environmental health. However, the implementation of an ecotoxicological hazard assessment at early steps of product development to elaborate the most promising candidates of lowest harm is scarce in industry practice. The present article introduces the interdisciplinary proof-of-concept project GreenToxiConomy, which shows the successful application of a Green Toxicology strategy for biosurfactants and a novel microgel-based pesticide release system. Both groups are promising candidates for industrial and agricultural applications and the ecotoxicological characterization is yet missing important information. An iterative substance- and application-oriented bioassay battery for acute and mechanism-specific toxicity within aquatic and terrestrial model species is introduced for both potentially hazardous materials getting into contact with humans and ending up in the environment. By applying in silico QSAR-based models on genotoxicity, endocrine disruption, skin sensitization and acute toxicity to algae, daphnids and fish, individual biosurfactants resulted in deviating toxicity, suggesting a pre-ranking of the compounds. Experimental toxicity assessment will further complement the predicted toxicity to elaborate the most promising candidates in an efficient pre-screening of new substances.
Collapse
Affiliation(s)
- Sarah Johann
- Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| | - Fabian G Weichert
- Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany; Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Lukas Schröer
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Lucas Stratemann
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Christoph Kämpfer
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Thomas-Benjamin Seiler
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Hygiene-Institut des Ruhrgebiets, Rotthauser Str. 21, 45879 Gelsenkirchen, Germany
| | - Sebastian Heger
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Alexander Töpel
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074 Aachen, Germany; DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Tim Sassmann
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074 Aachen, Germany; DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Andrij Pich
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074 Aachen, Germany; DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany; Aachen Maastricht Institute for Biobased Materials, Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Felix Jakob
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany; Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Peter Stoffels
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Institute for Microbiology, Department Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Magnus Philipp
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Institute for Microbiology, Department Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marius Terfrüchte
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Institute for Microbiology, Department Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Anita Loeschcke
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, 52425 Jülich, Germany
| | - Kerstin Schipper
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Institute for Microbiology, Department Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Michael Feldbrügge
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Institute for Microbiology, Department Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Nina Ihling
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074 Aachen, Germany
| | - Jochen Büchs
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074 Aachen, Germany
| | - Isabel Bator
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Till Tiso
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Lars M Blank
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Martina Roß-Nickoll
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany; Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany.
| |
Collapse
|