1
|
He W, Li X, Qian Q, Shang L. The developments and prospects of plant super-pangenomes: Demands, approaches, and applications. PLANT COMMUNICATIONS 2025; 6:101230. [PMID: 39722458 PMCID: PMC11897476 DOI: 10.1016/j.xplc.2024.101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
By integrating genomes from different accessions, pangenomes provide a more comprehensive and reference-bias-free representation of genetic information within a population compared to a single reference genome. With the rapid accumulation of genomic sequencing data and the expanding scope of plant research, plant pangenomics has gradually evolved from single-species to multi-species studies. This shift has given rise to the concept of a super-pangenome that covers all genomic sequences within a genus-level taxonomic group. By incorporating both cultivated and wild species, the super-pangenome has greatly enhanced the resolution of research in various areas such as plant genetic diversity, evolution, domestication, and molecular breeding. In this review, we present a comprehensive overview of the plant super-pangenome, emphasizing its development requirements, construction strategies, potential applications, and notable achievements. We also highlight the distinctive advantages and promising prospects of super-pangenomes while addressing current challenges and future directions.
Collapse
Affiliation(s)
- Wenchuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - XiaoXia Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Yazhouwan National Laboratory, Sanya 572024, China; State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; Academician Workstation, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China.
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Yazhouwan National Laboratory, Sanya 572024, China; Academician Workstation, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China.
| |
Collapse
|
2
|
Kapoor C, Anamika, Mukesh Sankar S, Singh SP, Singh N, Kumar S. Omics-driven utilization of wild relatives for empowering pre-breeding in pearl millet. PLANTA 2024; 259:155. [PMID: 38750378 DOI: 10.1007/s00425-024-04423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
MAIN CONCLUSION Pearl millet wild relatives harbour novel alleles which could be utilized to broaden genetic base of cultivated species. Genomics-informed pre-breeding is needed to speed up introgression from wild to cultivated gene pool in pearl millet. Rising episodes of intense biotic and abiotic stresses challenge pearl millet production globally. Wild relatives provide a wide spectrum of novel alleles which could address challenges posed by climate change. Pre-breeding holds potential to introgress novel diversity in genetically narrow cultivated Pennisetum glaucum from diverse gene pool. Practical utilization of gene pool diversity remained elusive due to genetic intricacies. Harnessing promising traits from wild pennisetum is limited by lack of information on underlying candidate genes/QTLs. Next-Generation Omics provide vast scope to speed up pre-breeding in pearl millet. Genomic resources generated out of draft genome sequence and improved genome assemblies can be employed to utilize gene bank accessions effectively. The article highlights genetic richness in pearl millet and its utilization with a focus on harnessing next-generation Omics to empower pre-breeding.
Collapse
Affiliation(s)
- Chandan Kapoor
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Anamika
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - S Mukesh Sankar
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala, 673012, India
| | - S P Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Nirupma Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sudhir Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
3
|
Hu H, Li R, Zhao J, Batley J, Edwards D. Technological Development and Advances for Constructing and Analyzing Plant Pangenomes. Genome Biol Evol 2024; 16:evae081. [PMID: 38669452 PMCID: PMC11058698 DOI: 10.1093/gbe/evae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
A pangenome captures the genomic diversity for a species, derived from a collection of genetic sequences of diverse populations. Advances in sequencing technologies have given rise to three primary methods for pangenome construction and analysis: de novo assembly and comparison, reference genome-based iterative assembly, and graph-based pangenome construction. Each method presents advantages and challenges in processing varying amounts and structures of DNA sequencing data. With the emergence of high-quality genome assemblies and advanced bioinformatic tools, the graph-based pangenome is emerging as an advanced reference for exploring the biological and functional implications of genetic variations.
Collapse
Affiliation(s)
- Haifei Hu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Risheng Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
4
|
Garg G, Kamphuis LG, Bayer PE, Kaur P, Dudchenko O, Taylor CM, Frick KM, Foley RC, Gao L, Aiden EL, Edwards D, Singh KB. A pan-genome and chromosome-length reference genome of narrow-leafed lupin (Lupinus angustifolius) reveals genomic diversity and insights into key industry and biological traits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1252-1266. [PMID: 35779281 PMCID: PMC9544533 DOI: 10.1111/tpj.15885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 06/02/2023]
Abstract
Narrow-leafed lupin (NLL; Lupinus angustifolius) is a key rotational crop for sustainable farming systems, whose grain is high in protein content. It is a gluten-free, non-genetically modified, alternative protein source to soybean (Glycine max) and as such has gained interest as a human food ingredient. Here, we present a chromosome-length reference genome for the species and a pan-genome assembly comprising 55 NLL lines, including Australian and European cultivars, breeding lines and wild accessions. We present the core and variable genes for the species and report on the absence of essential mycorrhizal associated genes. The genome and pan-genomes of NLL and its close relative white lupin (Lupinus albus) are compared. Furthermore, we provide additional evidence supporting LaRAP2-7 as the key alkaloid regulatory gene for NLL and demonstrate the NLL genome is underrepresented in classical NLR disease resistance genes compared to other sequenced legume species. The NLL genomic resources generated here coupled with previously generated RNA sequencing datasets provide new opportunities to fast-track lupin crop improvement.
Collapse
Affiliation(s)
- Gagan Garg
- CSIRO Agriculture and FoodFloreatWA6014Australia
| | - Lars G. Kamphuis
- CSIRO Agriculture and FoodFloreatWA6014Australia
- UWA Institute of AgricultureUniversity of Western AustraliaCrawleyWA6009Australia
- Centre for Crop and Disease ManagementCurtin UniversityBentleyWA6102Australia
| | - Philipp E. Bayer
- The School of Biological SciencesUniversity of Western AustraliaCrawleyWA6009Australia
| | - Parwinder Kaur
- School of Agriculture and Environment, University of Western AustraliaCrawleyWA6009Australia
| | - Olga Dudchenko
- Center for Genome Architecture, Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA
- Center for Theoretical Biological PhysicsRice UniversityHoustonTX77005USA
| | - Candy M. Taylor
- UWA Institute of AgricultureUniversity of Western AustraliaCrawleyWA6009Australia
- School of Agriculture and Environment, University of Western AustraliaCrawleyWA6009Australia
| | - Karen M. Frick
- CSIRO Agriculture and FoodFloreatWA6014Australia
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| | | | | | - Erez Lieberman Aiden
- School of Agriculture and Environment, University of Western AustraliaCrawleyWA6009Australia
- Center for Genome Architecture, Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA
- Center for Theoretical Biological PhysicsRice UniversityHoustonTX77005USA
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTechPudongChina
- Broad Institute of MIT and HarvardCambridgeMAUSA
| | - David Edwards
- UWA Institute of AgricultureUniversity of Western AustraliaCrawleyWA6009Australia
- The School of Biological SciencesUniversity of Western AustraliaCrawleyWA6009Australia
| | - Karam B. Singh
- CSIRO Agriculture and FoodFloreatWA6014Australia
- UWA Institute of AgricultureUniversity of Western AustraliaCrawleyWA6009Australia
- Centre for Crop and Disease ManagementCurtin UniversityBentleyWA6102Australia
| |
Collapse
|
5
|
Tay Fernandez C. Making a Pangenome Using the Iterative Mapping Approach. Methods Mol Biol 2022; 2443:259-271. [PMID: 35037211 DOI: 10.1007/978-1-0716-2067-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pangenomes have replaced single reference genomes as genetic references, as they contain a better scope of the diversity found in a single species. This protocol outlines the iterative mapping approach in constructing a pangenome, including how to check the raw data, align the data to a reference, how to assemble the data, and how to remove potential contaminants from the final assembly.
Collapse
|
6
|
Kumar J, Sen Gupta D. Prospects of next generation sequencing in lentil breeding. Mol Biol Rep 2020; 47:9043-9053. [PMID: 33037962 DOI: 10.1007/s11033-020-05891-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/03/2020] [Indexed: 11/28/2022]
Abstract
Lentil is an important food legume crop that has large and complex genome. During past years, considerable attention has been given on the use of next generation sequencing for enriching the genomic resources including identification of SSR and SNP markers, development of unigenes, transcripts, and identification of candidate genes for biotic and abiotic stresses, analysis of genetic diversity and identification of genes/ QTLs for agronomically important traits. However, in other crops including pulses, next generation sequencing has revolutionized the genomic research and helped in genomic assisted breeding rapidly and cost effectively. The present review discuss current status and future prospects of the use NGS based breeding in lentil.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kalyanpur, Kanpur, 208024, India.
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kalyanpur, Kanpur, 208024, India
| |
Collapse
|