1
|
Cimino A, Pat F, Oyebamiji O, Pferdehirt L, Pham CTN, Herzog ED, Guilak F. Programmable chronogenetic gene circuits for self-regulated circadian delivery of biologic drugs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643274. [PMID: 40161636 PMCID: PMC11952517 DOI: 10.1101/2025.03.14.643274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Cells of the body rely on the circadian clock to orchestrate daily changes in physiology that impact both homeostatic and pathological conditions, such as the inflammatory autoimmune disease rheumatoid arthritis (RA). In RA, high levels of proinflammatory cytokines peak early in the morning hours, reflected by daily changes in joint stiffness. Chronotherapy (or circadian medicine) seeks to delivery drugs at optimal times to maximize their efficacy. However, chronotherapy remains a largely unexplored approach for disease modifying, antirheumatic treatment, particularly for cell-based therapies. In this study, we developed autonomous chronogenetic gene circuits that produce the biologic drug interleukin-1 receptor antagonist (IL-1Ra) with desired phase and amplitude. We compared expression of IL-1Ra from circuits that contained different circadian promoter elements (E'-boxes, D-boxes, or RREs) and their ability to respond to inflammatory challenges in murine pre-differentiated induced pluripotent stem cells (PDiPSC) or engineered cartilage pellets. We confirmed that each circuit reliably peaked at a distinct circadian time over multiple days. Engineered cells generated significant amounts of IL-1Ra on a circadian basis, which protected them from circadian dysregulation and inflammatory damage. These programmable chronogenetic circuits have the potential to align with an individual's circadian rhythm for optimized, self-regulated daily drug delivery.
Collapse
|
2
|
Pferdehirt L, Damato AR, Lenz KL, Gonzalez-Aponte MF, Palmer D, Meng QJ, Herzog ED, Guilak F. A synthetic chronogenetic gene circuit for programmed circadian drug delivery. Nat Commun 2025; 16:1457. [PMID: 39920119 PMCID: PMC11806060 DOI: 10.1038/s41467-025-56584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/20/2025] [Indexed: 02/09/2025] Open
Abstract
Circadian medicine, the delivery of therapeutic interventions based on an individual's daily rhythms, has shown improved efficacy and reduced side-effects for various treatments. Rheumatoid arthritis and other inflammatory diseases are characterized by diurnal changes in cytokines, leading to inflammatory flares, with peak disease activity in the early morning. Using a combination of synthetic biology and tissue engineering, we developed circadian-based gene circuits, termed "chronogenetics", that express a prescribed transgene downstream of the core clock gene promoter, Period2 (Per2). Gene circuits were transduced into induced pluripotent stem cells that were tissue-engineered into cartilage constructs. Our anti-inflammatory chronogenetic constructs produced therapeutic concentrations of interleukin-1 receptor antagonist in vitro. Once implanted in vivo, the constructs expressed circadian rhythms and entrained to daily light cycles, producing daily increases in biologic drug at the peak of Per2 expression. This approach represents the development of a cell-based chronogenetic therapy for various applications in circadian medicine.
Collapse
Affiliation(s)
- Lara Pferdehirt
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Shriners Hospitals for Children - Saint Louis, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Anna R Damato
- Department of Biology, Washington University, St. Louis, MO, USA
| | - Kristin L Lenz
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Shriners Hospitals for Children - Saint Louis, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Daniel Palmer
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Shriners Hospitals for Children - Saint Louis, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Qing-Jun Meng
- Wellcome Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Erik D Herzog
- Department of Biology, Washington University, St. Louis, MO, USA
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, USA.
- Shriners Hospitals for Children - Saint Louis, St. Louis, MO, USA.
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.
| |
Collapse
|
3
|
Torres M, Kirchner M, Marks CG, Mertins P, Kramer A. Proteomic insights into circadian transcription regulation: novel E-box interactors revealed by proximity labeling. Genes Dev 2024; 38:1020-1032. [PMID: 39562139 DOI: 10.1101/gad.351836.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024]
Abstract
Circadian clocks (∼24 h) are responsible for daily physiological, metabolic, and behavioral changes. Central to these oscillations is the regulation of gene transcription. Previous research has identified clock protein complexes that interact with the transcriptional machinery to orchestrate circadian transcription, but technological constraints have limited the identification of de novo proteins. Here we use a novel genomic locus-specific quantitative proteomics approach to provide a new perspective on time of day-dependent protein binding at a critical chromatin locus involved in circadian transcription: the E-box. Using proximity labeling proteomics at the E-box of the clock-controlled Dbp gene in mouse fibroblasts, we identified 69 proteins at this locus at the time of BMAL1 binding. This method successfully enriched BMAL1 as well as HDAC3 and HISTONE H2A.V/Z, known circadian regulators. New E-box proteins include the MINK1 kinase and the transporters XPO7 and APPL1, whose depletion in human U-2 OS cells results in disrupted circadian rhythms, suggesting a role in the circadian transcriptional machinery. Overall, our approach uncovers novel circadian modulators and provides a new strategy to obtain a complete temporal picture of circadian transcriptional regulation.
Collapse
Affiliation(s)
- Manon Torres
- Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Marieluise Kirchner
- Core Unit Proteomics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Caroline G Marks
- Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Philipp Mertins
- Core Unit Proteomics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany;
| |
Collapse
|
4
|
Ono D, Weaver DR, Hastings MH, Honma KI, Honma S, Silver R. The Suprachiasmatic Nucleus at 50: Looking Back, Then Looking Forward. J Biol Rhythms 2024; 39:135-165. [PMID: 38366616 PMCID: PMC7615910 DOI: 10.1177/07487304231225706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
It has been 50 years since the suprachiasmatic nucleus (SCN) was first identified as the central circadian clock and 25 years since the last overview of developments in the field was published in the Journal of Biological Rhythms. Here, we explore new mechanisms and concepts that have emerged in the subsequent 25 years. Since 1997, methodological developments, such as luminescent and fluorescent reporter techniques, have revealed intricate relationships between cellular and network-level mechanisms. In particular, specific neuropeptides such as arginine vasopressin, vasoactive intestinal peptide, and gastrin-releasing peptide have been identified as key players in the synchronization of cellular circadian rhythms within the SCN. The discovery of multiple oscillators governing behavioral and physiological rhythms has significantly advanced our understanding of the circadian clock. The interaction between neurons and glial cells has been found to play a crucial role in regulating these circadian rhythms within the SCN. Furthermore, the properties of the SCN network vary across ontogenetic stages. The application of cell type-specific genetic manipulations has revealed components of the functional input-output system of the SCN and their correlation with physiological functions. This review concludes with the high-risk effort of identifying open questions and challenges that lie ahead.
Collapse
Affiliation(s)
- Daisuke Ono
- Stress Recognition and Response, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - David R Weaver
- Department of Neurobiology and NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Michael H Hastings
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Ken-Ichi Honma
- Research and Education Center for Brain Science, Hokkaido University, Sapporo, Japan
- Center for Sleep and Circadian Rhythm Disorders, Sapporo Hanazono Hospital, Sapporo, Japan
| | - Sato Honma
- Research and Education Center for Brain Science, Hokkaido University, Sapporo, Japan
- Center for Sleep and Circadian Rhythm Disorders, Sapporo Hanazono Hospital, Sapporo, Japan
| | - Rae Silver
- Stress Recognition and Response, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Neuroscience & Behavior, Barnard College and Department of Psychology, Columbia University, New York City, New York, USA
| |
Collapse
|
5
|
Zhong Z, Tan X, An X, Li J, Cai J, Jiang Y, Taufique SKT, Li B, Shi Q, Zhao M, Wang Y, Luo Q, Wang H. Administration of blue light in the morning and no blue-ray light in the evening improves the circadian functions of non-24-hour shift workers. Chronobiol Int 2024; 41:267-282. [PMID: 38267234 DOI: 10.1080/07420528.2024.2305218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/07/2024] [Indexed: 01/26/2024]
Abstract
In modern 24-hour society, various round-the-clock services have entailed shift work, resulting in non-24-hour schedules. However, the extent of behavioral and physiological alterations by non-24-hour schedules remains unclear, and particularly, effective interventions to restore the circadian functions of non-24-hour shift workers are rarely explored. In this study, we investigate the effects of a simulated non-24-hour military shift work schedule on daily rhythms and sleep, and establish an intervention measure to restore the circadian functions of non-24-hour shift workers. The three stages of experiments were conducted. The stage-one experiment was to establish a comprehensive evaluation index of the circadian rhythms and sleep for all 60 participants by analyzing wristwatch-recorded physiological parameters and sleep. The stage-two experiment evaluated the effects of an intervention strategy on physiological rhythms and sleep. The stage-three experiment was to examine the participants' physiological and behavioral disturbances under the simulated non-24-hour military shift work schedule and their improvements by the optimal lighting apparatus. We found that wristwatch-recorded physiological parameters display robust rhythmicity, and the phases of systolic blood pressures and heart rates can be used as reliable estimators for the human body time. The simulated non-24-hour military shift work schedule significantly disrupts the daily rhythms of oxygen saturation levels, blood pressures, heart rates, and reduces sleep quality. Administration of blue light in the morning and no blue-ray light in the evening improves the amplitude and synchronization of daily rhythms of the non-24-hour participants. These findings demonstrate the harmful consequences of the non-24-hour shift work schedule and provide a non-invasive strategy to improve the well-being and work efficiency of the non-24-hour shift population.
Collapse
Affiliation(s)
- Zhaomin Zhong
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xiaohui Tan
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xingna An
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jie Li
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jing Cai
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Yunchun Jiang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - S K Tahajjul Taufique
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Bo Li
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Quan Shi
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Meng Zhao
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Yali Wang
- Department of Neurology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qun Luo
- Naval Medical Center, PLA Naval Medical University, Shanghai, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
6
|
Basti A, Malhan D, Dumbani M, Dahlmann M, Stein U, Relógio A. Core-Clock Genes Regulate Proliferation and Invasion via a Reciprocal Interplay with MACC1 in Colorectal Cancer Cells. Cancers (Basel) 2022; 14:3458. [PMID: 35884519 PMCID: PMC9319284 DOI: 10.3390/cancers14143458] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/26/2022] [Accepted: 07/12/2022] [Indexed: 12/20/2022] Open
Abstract
The circadian clock coordinates the timing of several cellular processes including transcription, the cell cycle, and metabolism. Disruptions in the clock machinery trigger the abnormal regulation of cancer hallmarks, impair cellular homeostasis, and stimulate tumourigenesis. Here we investigated the role of a disrupted clock by knocking out or knocking down the core-clock (CC) genes ARNTL, PER2 or NR1D1 in cancer progression (e.g., cell proliferation and invasion) using colorectal cancer (CRC) cell lines HCT116, SW480 and SW620, from different progression stages with distinct clock phenotypes, and identified mechanistic links from the clock to altered cancer-promoting cellular properties. We identified MACC1 (metastasis-associated in colon cancer 1), a known driver for metastasis and an EMT (epithelial-to-mesenchymal transition)-related gene, to be significantly differentially expressed in CC manipulated cells and analysed the effect of MACC1 manipulation (knockout or overexpression) in terms of circadian clock phenotype as well as cancer progression. Our data points to a bi-directional MACC1-circadian clock interplay in CRC, via CC genes. In particular, knocking out MACC1 reduced the period of oscillations, while its overexpression increased it. Interestingly, we found the MACC1 protein to be circadian expressed in HCT116 WT cells, which was disrupted after the knockout of CC genes, and identified a MACC1-NR1D1 protein-protein interaction. In addition, MACC1 manipulation and CC knockout altered cell invasion properties of HCT116 cells, pointing to a regulation of clock and cancer progression in CRC, possibly via the interaction of MACC1 with core-clock genes.
Collapse
Affiliation(s)
- Alireza Basti
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, Institute for Theoretical Biology, 10115 Berlin, Germany; (A.B.); (D.M.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, Medical Department of Hematology, Oncology, and Tumor Immunology, Molecular Cancer Research Center, 13353 Berlin, Germany
- Institute for Systems Medicine, Faculty of Human Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany
| | - Deeksha Malhan
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, Institute for Theoretical Biology, 10115 Berlin, Germany; (A.B.); (D.M.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, Medical Department of Hematology, Oncology, and Tumor Immunology, Molecular Cancer Research Center, 13353 Berlin, Germany
- Institute for Systems Medicine, Faculty of Human Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany
| | - Malti Dumbani
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine Berlin in the Helmholtz-Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany; (M.D.); (M.D.); (U.S.)
| | - Mathias Dahlmann
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine Berlin in the Helmholtz-Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany; (M.D.); (M.D.); (U.S.)
| | - Ulrike Stein
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine Berlin in the Helmholtz-Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany; (M.D.); (M.D.); (U.S.)
- German Cancer Consortium, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Angela Relógio
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, Institute for Theoretical Biology, 10115 Berlin, Germany; (A.B.); (D.M.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, Medical Department of Hematology, Oncology, and Tumor Immunology, Molecular Cancer Research Center, 13353 Berlin, Germany
- Institute for Systems Medicine, Faculty of Human Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany
| |
Collapse
|
7
|
Pferdehirt L, Damato AR, Dudek M, Meng QJ, Herzog ED, Guilak F. Synthetic gene circuits for preventing disruption of the circadian clock due to interleukin-1-induced inflammation. SCIENCE ADVANCES 2022; 8:eabj8892. [PMID: 35613259 PMCID: PMC9132444 DOI: 10.1126/sciadv.abj8892] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 04/07/2022] [Indexed: 05/16/2023]
Abstract
The circadian clock regulates tissue homeostasis through temporal control of tissue-specific clock-controlled genes. In articular cartilage, disruptions in the circadian clock are linked to a procatabolic state. In the presence of inflammation, the cartilage circadian clock is disrupted, which further contributes to the pathogenesis of diseases such as osteoarthritis. Using synthetic biology and tissue engineering, we developed and tested genetically engineered cartilage from murine induced pluripotent stem cells (miPSCs) capable of preserving the circadian clock in the presence of inflammation. We found that circadian rhythms arise following chondrogenic differentiation of miPSCs. Exposure of tissue-engineered cartilage to the inflammatory cytokine interleukin-1 (IL-1) disrupted circadian rhythms and degraded the cartilage matrix. All three inflammation-resistant approaches showed protection against IL-1-induced degradation and loss of circadian rhythms. These synthetic gene circuits reveal a unique approach to support daily rhythms in cartilage and provide a strategy for creating cell-based therapies to preserve the circadian clock.
Collapse
Affiliation(s)
- Lara Pferdehirt
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Shriners Hospitals for Children–St. Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
| | - Anna R. Damato
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Michal Dudek
- Wellcome Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Erik D. Herzog
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Shriners Hospitals for Children–St. Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
| |
Collapse
|
8
|
Abdo AN, Rintisch C, Gabriel CH, Kramer A. Mutational scanning identified amino acids of the CLOCK exon 19-domain essential for circadian rhythms. Acta Physiol (Oxf) 2022; 234:e13794. [PMID: 35112498 DOI: 10.1111/apha.13794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 12/21/2022]
Abstract
AIM In the mammalian circadian clock, the CLOCK/BMAL1 heterodimer binds to E-box enhancer elements in the promoters of its target genes to activate transcription. The classical Clock mice, the first circadian mouse mutant discovered, are behaviourally arrhythmic. In this mutant, CLOCK lacks a 51 amino acid domain corresponding to exon 19 (CLOCKΔ19), which is required for normal transactivation. While the importance of this CLOCK domain for circadian rhythms is well established, the exact molecular mechanism is still unclear. METHODS Using CRISPR/Cas9 technology, we created a CLOCK knockout - CLOCK rescue system in human circadian reporter cells and performed systematic mutational scanning to assess the functionality of individual amino acids within the CLOCK exon 19-domain. RESULTS CLOCK knockout cells were arrhythmic, and circadian rhythms could be rescued by introducing wild-type CLOCK, but not CLOCKΔ19. In addition, we identified several residues, whose mutation failed to rescue rhythms in CLOCK knockout cells. Many of these are part of the hydrophobic binding interface of the predicted dimer of the CLOCK exon 19-domain. CONCLUSION Our data not only indicate that CLOCK/BMAL1 oligomerization mediated by the exon 19-domain is important for circadian dynamics but also suggest that the exon 19-domain provides a platform for binding coactivators and repressors, which in turn is required for normal circadian rhythms.
Collapse
Affiliation(s)
- Ashraf N Abdo
- Laboratory of Chronobiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carola Rintisch
- Laboratory of Chronobiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian H Gabriel
- Laboratory of Chronobiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Finger AM. In Vitro Assays for Measuring Intercellular Coupling Among Peripheral Circadian Oscillators. Methods Mol Biol 2022; 2482:153-167. [PMID: 35610425 DOI: 10.1007/978-1-0716-2249-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Circadian clocks can be found in nearly all eukaryotic organisms, as well as certain bacterial strains, including commensal microbiota. Exploring intercellular coupling among cell-autonomous circadian oscillators is crucial for understanding how cellular ensembles generate and sustain coherent circadian rhythms on the tissue level, and thus, rhythmic organ functions. Here we describe a protocol for studying intercellular coupling among peripheral circadian oscillators using three-dimensional spheroid cultures in order to measure coupling strength within peripheral clock networks. We use cell spheroids to simulate in vivo tissue integrity, as well as to increase complexity of cell-cell interactions and the abundance of potential coupling factors. Circadian rhythms are monitored using live-cell imaging of spheroids equipped with circadian reporters over several days.
Collapse
Affiliation(s)
- Anna-Marie Finger
- Charité Universitätsmedizin Berlin, Institute for Medical Immunology, Laboratory of Chronobiology, Berlin, Germany.
- Freie Universität Berlin, Berlin, Germany.
- Humboldt-Universität zu Berlin, Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany.
| |
Collapse
|
10
|
Lang V, Ferencik S, Ananthasubramaniam B, Kramer A, Maier B. Susceptibility rhythm to bacterial endotoxin in myeloid clock-knockout mice. eLife 2021; 10:e62469. [PMID: 34661529 PMCID: PMC8598165 DOI: 10.7554/elife.62469] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/16/2021] [Indexed: 12/12/2022] Open
Abstract
Local circadian clocks are active in most cells of our body. However, their impact on circadian physiology is still under debate. Mortality by endotoxic (LPS) shock is highly time-of-day dependent and local circadian immune function such as the cytokine burst after LPS challenge has been assumed to be causal for the large differences in survival. Here, we investigate the roles of light and myeloid clocks on mortality by endotoxic shock. Strikingly, mice in constant darkness (DD) show a threefold increased susceptibility to LPS as compared to mice in light-dark conditions. Mortality by endotoxic shock as a function of circadian time is independent of light-dark cycles as well as myeloid CLOCK or BMAL1 as demonstrated in conditional knockout mice. Unexpectedly, despite the lack of a myeloid clock these mice still show rhythmic patterns of pro- and anti-inflammatory cytokines such as TNFα, MCP-1, IL-18, and IL-10 in peripheral blood as well as time-of-day and site-dependent traffic of myeloid cells. We speculate that systemic time-cues are sufficient to orchestrate innate immune response to LPS by driving immune functions such as cell trafficking and cytokine expression.
Collapse
Affiliation(s)
- Veronika Lang
- Laboratory of Chronobiology, Charité Universitätsmedizin BerlinBerlinGermany
| | - Sebastian Ferencik
- Laboratory of Chronobiology, Charité Universitätsmedizin BerlinBerlinGermany
| | - Bharath Ananthasubramaniam
- Laboratory of Chronobiology, Charité Universitätsmedizin BerlinBerlinGermany
- Institute for Theoretical Biology, Humboldt-Universität zu BerlinBerlinGermany
| | - Achim Kramer
- Laboratory of Chronobiology, Charité Universitätsmedizin BerlinBerlinGermany
| | - Bert Maier
- Laboratory of Chronobiology, Charité Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
11
|
Klemz S, Wallach T, Korge S, Rosing M, Klemz R, Maier B, Fiorenza NC, Kaymak I, Fritzsche AK, Herzog ED, Stanewsky R, Kramer A. Protein phosphatase 4 controls circadian clock dynamics by modulating CLOCK/BMAL1 activity. Genes Dev 2021; 35:1161-1174. [PMID: 34301769 PMCID: PMC8336894 DOI: 10.1101/gad.348622.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022]
Abstract
In all organisms with circadian clocks, post-translational modifications of clock proteins control the dynamics of circadian rhythms, with phosphorylation playing a dominant role. All major clock proteins are highly phosphorylated, and many kinases have been described to be responsible. In contrast, it is largely unclear whether and to what extent their counterparts, the phosphatases, play an equally crucial role. To investigate this, we performed a systematic RNAi screen in human cells and identified protein phosphatase 4 (PPP4) with its regulatory subunit PPP4R2 as critical components of the circadian system in both mammals and Drosophila Genetic depletion of PPP4 shortens the circadian period, whereas overexpression lengthens it. PPP4 inhibits CLOCK/BMAL1 transactivation activity by binding to BMAL1 and counteracting its phosphorylation. This leads to increased CLOCK/BMAL1 DNA occupancy and decreased transcriptional activity, which counteracts the "kamikaze" properties of CLOCK/BMAL1. Through this mechanism, PPP4 contributes to the critical delay of negative feedback by retarding PER/CRY/CK1δ-mediated inhibition of CLOCK/BMAL1.
Collapse
Affiliation(s)
- Sabrina Klemz
- Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin,10117 Berlin, Germany
| | - Thomas Wallach
- Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin,10117 Berlin, Germany
| | - Sandra Korge
- Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin,10117 Berlin, Germany
| | - Mechthild Rosing
- Institute of Neuro and Behavioral Biology, Westfälische Wilhelms University, Münster 48149, Germany
| | - Roman Klemz
- Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin,10117 Berlin, Germany
| | - Bert Maier
- Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin,10117 Berlin, Germany
| | - Nicholas C Fiorenza
- Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin,10117 Berlin, Germany
| | - Irem Kaymak
- Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin,10117 Berlin, Germany
| | - Anna K Fritzsche
- Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin,10117 Berlin, Germany
| | - Erik D Herzog
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Ralf Stanewsky
- Institute of Neuro and Behavioral Biology, Westfälische Wilhelms University, Münster 48149, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin,10117 Berlin, Germany
| |
Collapse
|
12
|
Finger AM, Jäschke S, Del Olmo M, Hurwitz R, Granada AE, Herzel H, Kramer A. Intercellular coupling between peripheral circadian oscillators by TGF-β signaling. SCIENCE ADVANCES 2021; 7:7/30/eabg5174. [PMID: 34301601 PMCID: PMC8302137 DOI: 10.1126/sciadv.abg5174] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/08/2021] [Indexed: 05/04/2023]
Abstract
Coupling between cell-autonomous circadian oscillators is crucial to prevent desynchronization of cellular networks and disruption of circadian tissue functions. While neuronal oscillators within the mammalian central clock, the suprachiasmatic nucleus, couple intercellularly, coupling among peripheral oscillators is controversial and the molecular mechanisms are unknown. Using two- and three-dimensional mammalian culture models in vitro (mainly human U-2 OS cells) and ex vivo, we show that peripheral oscillators couple via paracrine pathways. We identify transforming growth factor-β (TGF-β) as peripheral coupling factor that mediates paracrine phase adjustment of molecular clocks through transcriptional regulation of core-clock genes. Disruption of TGF-β signaling causes desynchronization of oscillator networks resulting in reduced amplitude and increased sensitivity toward external zeitgebers. Our findings reveal an unknown mechanism for peripheral clock synchrony with implications for rhythmic organ functions and circadian health.
Collapse
Affiliation(s)
- Anna-Marie Finger
- Charité Universitätsmedizin Berlin, Institute for Medical Immunology, Laboratory of Chronobiology, Charitéplatz 1, 10117 Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Sebastian Jäschke
- Charité Universitätsmedizin Berlin, Institute for Medical Immunology, Laboratory of Chronobiology, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Marta Del Olmo
- Charité and Humboldt Universität zu Berlin, Institute for Theoretical Biology, Laboratory of Theoretical Chronobiology, Philippstraße 13, 10115 Berlin, Germany
| | - Robert Hurwitz
- Max Planck Institute for Infection Biology, Biochemistry-Protein Purification Core Facility, Charitéplatz 1, 10117 Berlin, Germany
| | - Adrián E Granada
- Charité-Universitätsmedizin, Charité Comprehensive Cancer Center, Laboratory of Systems Oncology, Charitéplatz 1, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Berlin, 69120, Heidelberg, Germany
| | - Hanspeter Herzel
- Charité and Humboldt Universität zu Berlin, Institute for Theoretical Biology, Laboratory of Theoretical Chronobiology, Philippstraße 13, 10115 Berlin, Germany
| | - Achim Kramer
- Charité Universitätsmedizin Berlin, Institute for Medical Immunology, Laboratory of Chronobiology, Charitéplatz 1, 10117 Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
13
|
Gabriel CH, Del Olmo M, Zehtabian A, Jäger M, Reischl S, van Dijk H, Ulbricht C, Rakhymzhan A, Korte T, Koller B, Grudziecki A, Maier B, Herrmann A, Niesner R, Zemojtel T, Ewers H, Granada AE, Herzel H, Kramer A. Live-cell imaging of circadian clock protein dynamics in CRISPR-generated knock-in cells. Nat Commun 2021; 12:3796. [PMID: 34145278 PMCID: PMC8213786 DOI: 10.1038/s41467-021-24086-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
The cell biology of circadian clocks is still in its infancy. Here, we describe an efficient strategy for generating knock-in reporter cell lines using CRISPR technology that is particularly useful for genes expressed transiently or at low levels, such as those coding for circadian clock proteins. We generated single and double knock-in cells with endogenously expressed PER2 and CRY1 fused to fluorescent proteins allowing us to simultaneously monitor the dynamics of CRY1 and PER2 proteins in live single cells. Both proteins are highly rhythmic in the nucleus of human cells with PER2 showing a much higher amplitude than CRY1. Surprisingly, CRY1 protein is nuclear at all circadian times indicating the absence of circadian gating of nuclear import. Furthermore, in the nucleus of individual cells CRY1 abundance rhythms are phase-delayed (~5 hours), and CRY1 levels are much higher (>5 times) compared to PER2 questioning the current model of the circadian oscillator.
Collapse
Affiliation(s)
- Christian H Gabriel
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Marta Del Olmo
- Institute for Theoretical Biology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Amin Zehtabian
- Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Marten Jäger
- Berlin Institute of Health (BIH) Core Genomics Facility, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Silke Reischl
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Hannah van Dijk
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Carolin Ulbricht
- Immune Dynamics, Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Asylkhan Rakhymzhan
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Thomas Korte
- Molecular Biophysics, Department of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Barbara Koller
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Astrid Grudziecki
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Bert Maier
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Andreas Herrmann
- Molecular Biophysics, Department of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Raluca Niesner
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
- Dynamic and Functional in vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Tomasz Zemojtel
- Berlin Institute of Health (BIH) Core Genomics Facility, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Helge Ewers
- Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Adrián E Granada
- Charité Comprehensive Cancer Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Achim Kramer
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany.
| |
Collapse
|