1
|
Melero R, Quiroz-Rodríguez ME, Lara-Hernández F, Redón J, Sáez G, Briongos-Figuero LS, Abadía-Otero J, Martín-Escudero JC, Chaves FJ, Ayala G, García-García AB. Genetic interaction in the association between oxidative stress and diabetes in the Spanish population. Free Radic Biol Med 2023; 205:62-68. [PMID: 37268047 DOI: 10.1016/j.freeradbiomed.2023.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Oxidative stress (OS) is a relevant intermediate mechanism involved in Type 2 Diabetes Mellitus (T2D) development. To date, the interaction between OS parameters and variations in genes related to T2D has not been analyzed. AIMS To study the genetic interaction of genes potentially related to OS levels (redox homeostasis, renin-angiotensin-aldosterone system, endoplasmic stress response, dyslipidemia, obesity and metal transport) and OS and T2D risk in a general population from Spain (the Hortega Study) in relation to the risk of suffering from T2D. MATERIALS AND METHODS One thousand five hundred and two adults from the University Hospital Rio Hortega area were studied and 900 single nucleotide polymorphisms (SNPs) from 272 candidate genes were analyzed. RESULTS There were no differences in OS levels between cases and controls. Some polymorphisms were associated with T2D and with OS levels. Significant interactions were observed between OS levels and two polymorphisms in relation to T2D presence: rs196904 (ERN1 gene) and rs2410718 (COX7C gene); and between OS levels and haplotypes of the genes: SP2, HFF1A, ILI8R1, EIF2AK2, TXNRD2, PPARA, NDUFS2 and ERN1. CONCLUSIONS Our results indicate that genetic variations of the studied genes are associated with OS levels and that their interaction with OS parameters may contribute to the risk of developing T2D in the Spanish general population. These data support the importance of analyzing the influence of OS levels and their interaction with genetic variations in order to establish their real impact in T2D risk. Further studies are required to identify the real relevance of interactions between genetic variations and OS levels and the mechanisms involved in them.
Collapse
Affiliation(s)
- Rebeca Melero
- Genomics and Diabetes Unit, INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | | | | | - Josep Redón
- Cardiometabolic Renal Risk Research Group, INCLIVA Biomedical Research Institute, University of Valencia, 46010, Valencia, Spain; CIBEROBN, ISCIII, 28029, Madrid, Spain
| | - Guillermo Sáez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Odontology, University of Valencia, 46010, Valencia, Spain; Service of Clinical Analysis, University Hospital Dr. Peset-FISABIO, Spain
| | | | - Jessica Abadía-Otero
- Department of Internal Medicine, Rio Hortega University Hospital, 47012, Valladolid, Spain
| | - Juan Carlos Martín-Escudero
- Department of Internal Medicine, Rio Hortega University Hospital, 47012, Valladolid, Spain; Department of Medicine, Faculty of Medicine, University of Valladolid, 47002, Valladolid, Spain
| | - F Javier Chaves
- Genomics and Diabetes Unit, INCLIVA Biomedical Research Institute, 46010, Valencia, Spain; CIBERDEM, ISCIII, 28029, Madrid, Spain.
| | - Guillermo Ayala
- Department of Statistics and Operation Research, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - Ana-Bárbara García-García
- Genomics and Diabetes Unit, INCLIVA Biomedical Research Institute, 46010, Valencia, Spain; CIBERDEM, ISCIII, 28029, Madrid, Spain
| |
Collapse
|
2
|
Koppes EA, Johnson MA, Moresco JJ, Luppi P, Lewis DW, Stolz DB, Diedrich JK, Yates JR, Wek RC, Watkins SC, Gollin SM, Park HJ, Drain P, Nicholls RD. Insulin secretion deficits in a Prader-Willi syndrome β-cell model are associated with a concerted downregulation of multiple endoplasmic reticulum chaperones. PLoS Genet 2023; 19:e1010710. [PMID: 37068109 PMCID: PMC10138222 DOI: 10.1371/journal.pgen.1010710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 04/27/2023] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
Prader-Willi syndrome (PWS) is a multisystem disorder with neurobehavioral, metabolic, and hormonal phenotypes, caused by loss of expression of a paternally-expressed imprinted gene cluster. Prior evidence from a PWS mouse model identified abnormal pancreatic islet development with retention of aged insulin and deficient insulin secretion. To determine the collective roles of PWS genes in β-cell biology, we used genome-editing to generate isogenic, clonal INS-1 insulinoma lines having 3.16 Mb deletions of the silent, maternal- (control) and active, paternal-allele (PWS). PWS β-cells demonstrated a significant cell autonomous reduction in basal and glucose-stimulated insulin secretion. Further, proteomic analyses revealed reduced levels of cellular and secreted hormones, including all insulin peptides and amylin, concomitant with reduction of at least ten endoplasmic reticulum (ER) chaperones, including GRP78 and GRP94. Critically, differentially expressed genes identified by whole transcriptome studies included reductions in levels of mRNAs encoding these secreted peptides and the group of ER chaperones. In contrast to the dosage compensation previously seen for ER chaperones in Grp78 or Grp94 gene knockouts or knockdown, compensation is precluded by the stress-independent deficiency of ER chaperones in PWS β-cells. Consistent with reduced ER chaperones levels, PWS INS-1 β-cells are more sensitive to ER stress, leading to earlier activation of all three arms of the unfolded protein response. Combined, the findings suggest that a chronic shortage of ER chaperones in PWS β-cells leads to a deficiency of protein folding and/or delay in ER transit of insulin and other cargo. In summary, our results illuminate the pathophysiological basis of pancreatic β-cell hormone deficits in PWS, with evolutionary implications for the multigenic PWS-domain, and indicate that PWS-imprinted genes coordinate concerted regulation of ER chaperone biosynthesis and β-cell secretory pathway function.
Collapse
Affiliation(s)
- Erik A Koppes
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Marie A Johnson
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James J Moresco
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Patrizia Luppi
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Dale W Lewis
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jolene K Diedrich
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - John R Yates
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Susanne M Gollin
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Hyun Jung Park
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Peter Drain
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Robert D Nicholls
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
3
|
Yagil C, Varadi-Levi R, Ifrach C, Yagil Y. Dysregulated UPR and ER Stress Related to a Mutation in the Sdf2l1 Gene Are Involved in the Pathophysiology of Diet-Induced Diabetes in the Cohen Diabetic Rat. Int J Mol Sci 2023; 24:1355. [PMID: 36674879 PMCID: PMC9866835 DOI: 10.3390/ijms24021355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
The Cohen Diabetic rat is a model of type 2 diabetes mellitus that consists of the susceptible (CDs/y) and resistant (CDr/y) strains. Diabetes develops in CDs/y provided diabetogenic diet (DD) but not when fed regular diet (RD) nor in CDr/y given either diet. We recently identified in CDs/y a deletion in Sdf2l1, a gene that has been attributed a role in the unfolded protein response (UPR) and in the prevention of endoplasmic reticulum (ER) stress. We hypothesized that this deletion prevents expression of SDF2L1 and contributes to the pathophysiology of diabetes in CDs/y by impairing UPR, enhancing ER stress, and preventing CDs/y from secreting sufficient insulin upon demand. We studied SDF2L1 expression in CDs/y and CDr/y. We evaluated UPR by examining expression of key proteins involved in both strains fed either RD or DD. We assessed the ability of all groups of animals to secrete insulin during an oral glucose tolerance test (OGTT) over 4 weeks, and after overnight feeding (postprandial) over 4 months. We found that SDF2L1 was expressed in CDr/y but not in CDs/y. The pattern of expression of proteins involved in UPR, namely the PERK (EIF2α, ATF4 and CHOP) and IRE1 (XBP-1) pathways, was different in CDs/y DD from all other groups, with consistently lower levels of expression at 4 weeks after initiation of DD and coinciding with the development of diabetes. In CDs/y RD, insulin secretion was mildly impaired, whereas in CDs/y DD, the ability to secrete insulin decreased over time, leading to the development of the diabetic phenotype. We conclude that in CDs/y DD, UPR participating proteins were dysregulated and under-expressed at the time point when the diabetic phenotype became overt. In parallel, insulin secretion in CDs/y DD became markedly impaired. Our findings suggest that under conditions of metabolic load with DD and increased demand for insulin secretion, the lack of SDF2L1 expression in CDs/y is associated with UPR dysregulation and ER stress which, combined with oxidative stress previously attributed to the concurrent Ndufa4 mutation, are highly likely to contribute to the pathophysiology of diabetes in this model.
Collapse
Affiliation(s)
- Chana Yagil
- Laboratory for Molecular Medicine and Israeli Rat Genome Center, Barzilai University Medical Center, Ashkelon 7830604, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 8410501, Israel
| | - Ronen Varadi-Levi
- Laboratory for Molecular Medicine and Israeli Rat Genome Center, Barzilai University Medical Center, Ashkelon 7830604, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 8410501, Israel
| | - Chen Ifrach
- Laboratory for Molecular Medicine and Israeli Rat Genome Center, Barzilai University Medical Center, Ashkelon 7830604, Israel
| | - Yoram Yagil
- Laboratory for Molecular Medicine and Israeli Rat Genome Center, Barzilai University Medical Center, Ashkelon 7830604, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 8410501, Israel
| |
Collapse
|