1
|
Barth DD, Mullane MJ, Sampson C, Chou C, Pickering J, Nicol MP, Davies MR, Carapetis J, Bowen AC. Missing Piece Study protocol: prospective surveillance to determine the epidemiology of group A streptococcal pharyngitis and impetigo in remote Western Australia. BMJ Open 2022; 12:e057296. [PMID: 35387825 PMCID: PMC8987764 DOI: 10.1136/bmjopen-2021-057296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Group A β-haemolytic Streptococcus (GAS), a Gram-positive bacterium, causes skin, mucosal and systemic infections. Repeated GAS infections can lead to autoimmune diseases acute rheumatic fever (ARF) and rheumatic heart disease (RHD). Aboriginal and Torres Strait Islander peoples in Australia have the highest rates of ARF and RHD in the world. Despite this, the contemporaneous prevalence and incidence of GAS pharyngitis and impetigo in remote Australia remains unknown. To address this, we have designed a prospective surveillance study of GAS pharyngitis and impetigo to collect coincident contemporary evidence to inform and enhance primary prevention strategies for ARF. METHODS AND ANALYSIS The Missing Piece Study aims to document the epidemiology of GAS pharyngitis and impetigo through collection of clinical, serological, microbiological and bacterial genomic data among remote-living Australian children. The study comprises two components: (1) screening of all children at school for GAS pharyngitis and impetigo up to three times a year and (2) weekly active surveillance visits to detect new cases of pharyngitis and impetigo. Environmental swabbing in remote schools will be included, to inform environmental health interventions. In addition, the application of new diagnostic technologies, microbiome analysis and bacterial genomic evaluations will enhance primary prevention strategies, having direct bearing on clinical care, vaccine development and surveillance for vaccine clinical trials. ETHICS AND DISSEMINATION Ethical approval has been obtained from the Western Australian Aboriginal Health Ethics Committee (Ref: 892) and Human Research Ethics Committee of the University of Western Australia (Ref: RA/4/20/5101). Study findings will be shared with community members, teachers and children at participating schools, together with academic and medical services. Sharing findings in an appropriate manner is important and will be done in a suitable way which includes plain language summaries and presentations. Finally, findings and updates will also be disseminated to collaborators, researchers and health planners through peer-reviewed journal publications.
Collapse
Affiliation(s)
- Dylan D Barth
- Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Marianne J Mullane
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Claudia Sampson
- Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Coco Chou
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Janessa Pickering
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Mark P Nicol
- Division of Infection and Immunity, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jonathan Carapetis
- Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, Western Australia, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Infectious Diseases, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Asha C Bowen
- Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, Western Australia, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Infectious Diseases, Perth Children's Hospital, Nedlands, Western Australia, Australia
- Institute for Health Research, University of Notre Dame, Fremantle, Western Australia, Australia
| |
Collapse
|
2
|
Jespersen MG, Lacey JA, Tong SYC, Davies MR. Global genomic epidemiology of Streptococcus pyogenes. INFECTION GENETICS AND EVOLUTION 2020; 86:104609. [PMID: 33147506 DOI: 10.1016/j.meegid.2020.104609] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 02/04/2023]
Abstract
Streptococcus pyogenes is one of the Top 10 human infectious disease killers worldwide causing a range of clinical manifestations in humans. Colonizing a range of ecological niches within its sole host, the human, is key to the ability of this opportunistic pathogen to cause direct and post-infectious manifestations. The expansion of genome sequencing capabilities and data availability over the last decade has led to an improved understanding of the evolutionary dynamics of this pathogen within a global framework where epidemiological relationships and evolutionary mechanisms may not be universal. This review uses the recent publication by Davies et al., 2019 as an updated global framework to address S. pyogenes population genomics, highlighting how genomics is being used to gain new insights into evolutionary processes, transmission pathways, and vaccine design.
Collapse
Affiliation(s)
- Magnus G Jespersen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jake A Lacey
- Doherty Department, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Steven Y C Tong
- Doherty Department, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, VIC, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|