1
|
Amarsanaa E, Wie M, Shin U, Bilal N, Hwang J, Lee E, Lee S, Kim BG, Kim S, Lee Y, Myung K. Synergistic enhancement of PARP inhibition via small molecule UNI66-mediated suppression of BRD4-dependent transcription of RAD51 and CtIP. NAR Cancer 2025; 7:zcaf013. [PMID: 40308947 PMCID: PMC12041917 DOI: 10.1093/narcan/zcaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 02/18/2025] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
Targeted therapy leveraging synthetic lethality in homologous recombination (HR)-defective tumors, particularly in BRCA-mutated tumors through poly(ADP-ribose) polymerase (PARP)-dependent repair inhibition, has shown success. However, the challenge lies in the ability of the tumors to reactivate HR via diverse mechanisms, leading to resistance against PARP-dependent repair inhibition. Addressing this issue, the down-regulation of HR activity has been explored as a potential strategy to overcome PARP inhibitor-resistant tumors. Yet, the intricate modulation of HR gene expression in mammalian cells is still not fully understood. In this study, we used a small molecule, UNI66, identified from high-throughput screening, to investigate regulatory mechanisms of HR. UNI66 was observed to induce synthetic lethality in PARP1-deficient cells and enhanced the sensitivity of multiple cancer cells to PARP inhibitors, suggesting a role in HR down-regulation. Mechanistically, UNI66 was found to interact with and inhibit BRD4 protein binding to the promoters of CtIP and RAD51 genes, resulting in the down-regulation of their transcription. This decrease in CtIP and RAD51 expression was associated with reduced HR activity, thereby increasing the sensitivity of tumors to PARP inhibitors. These findings indicate that BRD4-mediated transcriptional regulation of CtIP and RAD51 influences HR activity, which may have implications for overcoming resistance to PARP inhibitors.
Collapse
Affiliation(s)
- Enkhzul Amarsanaa
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Minwoo Wie
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Unbeom Shin
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Nabeela Bilal
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jungme Hwang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Eun A Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Seon Young Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Shinseog Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Yoonsung Lee
- Clinical Research Institute, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
2
|
Deshpande RA, Marin-Gonzalez A, Barnes HK, Woolley PR, Ha T, Paull TT. Genome-wide analysis of DNA-PK-bound MRN cleavage products supports a sequential model of DSB repair pathway choice. Nat Commun 2023; 14:5759. [PMID: 37717054 PMCID: PMC10505227 DOI: 10.1038/s41467-023-41544-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
The Mre11-Rad50-Nbs1 (MRN) complex recognizes and processes DNA double-strand breaks for homologous recombination by performing short-range removal of 5' strands. Endonucleolytic processing by MRN requires a stably bound protein at the break site-a role we postulate is played by DNA-dependent protein kinase (DNA-PK) in mammals. Here we interrogate sites of MRN-dependent processing by identifying sites of CtIP association and by sequencing DNA-PK-bound DNA fragments that are products of MRN cleavage. These intermediates are generated most efficiently when DNA-PK is catalytically blocked, yielding products within 200 bp of the break site, whereas DNA-PK products in the absence of kinase inhibition show greater dispersal. Use of light-activated Cas9 to induce breaks facilitates temporal resolution of DNA-PK and Mre11 binding, showing that both complexes bind to DNA ends before release of DNA-PK-bound products. These results support a sequential model of double-strand break repair involving collaborative interactions between homologous and non-homologous repair complexes.
Collapse
Affiliation(s)
| | - Alberto Marin-Gonzalez
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Baltimore, MD, 21205, USA
| | - Hannah K Barnes
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Phillip R Woolley
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Baltimore, MD, 21205, USA
| | - Tanya T Paull
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
3
|
Deshpande RA, Paull TT. Characterization of DNA-PK-Bound End Fragments Using GLASS-ChIP. Methods Mol Biol 2022; 2444:171-182. [PMID: 35290638 DOI: 10.1007/978-1-0716-2063-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Endonucleolytic cleavage of DNA ends by the human Mre11-Rad50-Nbs1 (MRN) complex occurs in a manner that is promoted by DNA-dependent protein kinase (DNA-PK). A method is described to isolate DNA-PK-bound fragments released from chromatin in human cells using a modified Gentle Lysis and Size Selection chromatin immunoprecipitation (GLASS-ChIP) protocol. This method, combined with real-time PCR or next-generation sequencing, can identify sites of MRN endonucleolytic cutting adjacent to DNA-PK binding sites in human cells.
Collapse
Affiliation(s)
- Rajashree A Deshpande
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Tanya T Paull
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
4
|
Abstract
DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3'-single-stranded DNA (3'-ssDNA). The extent of resection regulates DNA double-strand break (DSB) repair pathway choice and thereby genomic stability. Here, we characterize an optimized immunofluorescence (IF) microscopy-based protocol for measuring ssDNA in mammalian cells by labeling genomic DNA with 5-bromo-2'-deoxyuridine (BrdU). BrdU foci can be detected under non-denaturing conditions by anti-BrdU antibody, providing an accurate and reliable readout of DNA end resection in most mammalian cell lines. For complete details on the use and execution of this protocol, please refer to Kilgas et al. (2021).
Collapse
Affiliation(s)
- Susan Kilgas
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Anne E. Kiltie
- Rowett Institute, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Kristijan Ramadan
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
5
|
Tucker EJ. The Genetics and Biology of FOXL2. Sex Dev 2021; 16:184-193. [PMID: 34727551 DOI: 10.1159/000519836] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/22/2021] [Indexed: 11/19/2022] Open
Abstract
FOXL2 encodes a transcription factor that regulates a wide array of target genes including those involved in sex development, eyelid development, ovarian function and maintenance, genomic integrity as well as cellular pathways such as cell-cycle progression, proliferation, and apoptosis. The role of FOXL2 has been widely studied in humans and animals. Consistent with its role in ovarian and eyelid development, over 100 germline variants in FOXL2 are associated with blepharophimosis, ptosis, and epicanthus inversus syndrome in humans, an autosomal dominant condition characterised by ovarian dysgenesis/premature ovarian insufficiency, as well as defective eyelid development. Reflecting its role in apoptosis and proliferation, a somatic variant in FOXL2 causes adult granulosa cell tumours in humans. Despite being widely studied and having clear relevance to human disease, much remains unknown about the genes FOXL2 regulates and how it exerts its wide-reaching effect on multiple organs. This review focuses on FOXL2 and its varied roles as a transcription factor in sex determination, ovarian maintenance and function, eyelid development, genome integrity, and cell regulation, followed by discussion of the in vivo disruption of FOXL2 in humans and other species.
Collapse
Affiliation(s)
- Elena J Tucker
- Reproductive Development, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Deshpande RA, Paull TT. Characterization of DNA-PK-bound end fragments using GLASS-ChIP. Methods Enzymol 2021; 661:205-217. [PMID: 34776213 DOI: 10.1016/bs.mie.2021.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Endonucleolytic cleavage of DNA ends by the human Mre11-Rad50-Nbs1 (MRN) complex occurs in a manner that is promoted by DNA-dependent Protein Kinase (DNA-PK). A method is described to isolate DNA-PK-bound fragments released from chromatin in human cells using a modified Gentle Lysis and Size Selection chromatin immunoprecipitation (GLASS-ChIP) protocol. This method, combined with real-time PCR or next-generation sequencing, can identify sites of MRN endonucleolytic cutting adjacent to DNA-PK binding sites in human cells.
Collapse
Affiliation(s)
- Rajashree A Deshpande
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Tanya T Paull
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|