1
|
Sentek H, Braun A, Budeus B, Klein D. Non-small cell lung cancer cells and concomitant cancer therapy induce a resistance-promoting phenotype of tumor-associated mesenchymal stem cells. Front Oncol 2024; 14:1406268. [PMID: 39011489 PMCID: PMC11246879 DOI: 10.3389/fonc.2024.1406268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/30/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction The tumor microenvironment gained attraction over the last decades as stromal cells significantly impact on tumor development, progression and metastasis, and immune evasion as well as on cancer therapy resistance. We previously reported that lung-resident mesenchymal stem cells (MSCs) were mobilized and activated in non-small cell lung cancer (NSCLC) progression and could even mediate radiation resistance in co-cultured NSCLC cells. Methods We investigated how MSCs were affected by NSCLC cells in combination with cancer (radiation) therapy in indirect co-cultures using tumor-conditioned medium and Transwells or direct three-dimensional NSCLC-MSC spheroid co-cultures in order to unravel the resistance-mediating action of tumor-associated MSCs. Results Although no obvious phenotypic and functional alterations in MSCs following NSCLC co-culture could be observed, MSC senescence was induced following co-applied radiotherapy (RT). Global gene expression profiling, in combination with gene set enrichment analysis upon treatment, was used to confirm the senescent phenotype of irradiated MSC and to reveal relevant senescence-associated secretory phenotype (SASP) factors that could meditate NSCLC RT resistance. We identified senescent tumor-associated MSC-derived serine proteinase inhibitor (serpin) E1/PAI1 as potential SASP factor mediating NSCLC progression and RT resistance. Discussion Specified intra-tumor-stroma interactions and cell type-specific pro-tumorigenic functions could not only improve lung cancer classification but could even be used for a more precise profiling of individual patients, finally paving an additional way for the discovery of potential drug targets for NSCLC patients.
Collapse
Affiliation(s)
| | | | | | - Diana Klein
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| |
Collapse
|
2
|
Lei J, Jiang X, Huang D, Jing Y, Yang S, Geng L, Yan Y, Zheng F, Cheng F, Zhang W, Belmonte JCI, Liu GH, Wang S, Qu J. Human ESC-derived vascular cells promote vascular regeneration in a HIF-1α dependent manner. Protein Cell 2024; 15:36-51. [PMID: 37158785 PMCID: PMC10762672 DOI: 10.1093/procel/pwad027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/22/2023] [Indexed: 05/10/2023] Open
Abstract
Hypoxia-inducible factor (HIF-1α), a core transcription factor responding to changes in cellular oxygen levels, is closely associated with a wide range of physiological and pathological conditions. However, its differential impacts on vascular cell types and molecular programs modulating human vascular homeostasis and regeneration remain largely elusive. Here, we applied CRISPR/Cas9-mediated gene editing of human embryonic stem cells and directed differentiation to generate HIF-1α-deficient human vascular cells including vascular endothelial cells, vascular smooth muscle cells, and mesenchymal stem cells (MSCs), as a platform for discovering cell type-specific hypoxia-induced response mechanisms. Through comparative molecular profiling across cell types under normoxic and hypoxic conditions, we provide insight into the indispensable role of HIF-1α in the promotion of ischemic vascular regeneration. We found human MSCs to be the vascular cell type most susceptible to HIF-1α deficiency, and that transcriptional inactivation of ANKZF1, an effector of HIF-1α, impaired pro-angiogenic processes. Altogether, our findings deepen the understanding of HIF-1α in human angiogenesis and support further explorations of novel therapeutic strategies of vascular regeneration against ischemic damage.
Collapse
Affiliation(s)
- Jinghui Lei
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoyuan Huang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ying Jing
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shanshan Yang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lingling Geng
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yupeng Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
| | - Fangshuo Zheng
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
| | - Fang Cheng
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Beijing 100101, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
- Sino-Danish Center for Education and Research, Beijing 101408, China
- Aging Biomarker Consortium, China
| | | | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
- Aging Biomarker Consortium, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, China
| |
Collapse
|
3
|
Budeus B, Unger K, Hess J, Sentek H, Klein D. Comparative computational analysis to distinguish mesenchymal stem cells from fibroblasts. Front Immunol 2023; 14:1270493. [PMID: 37822926 PMCID: PMC10562561 DOI: 10.3389/fimmu.2023.1270493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/30/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) are considered to be the most promising stem cell type for cell-based therapies in regenerative medicine. Based on their potential to home to diseased body sites following a therapeutically application, these cells could (i) differentiate then into organ-specific cell types to locally restore injured cells or, most prominently, (ii) foster tissue regeneration including immune modulations more indirectly by secretion of protective growth factors and cytokines. As tissue-resident stem cells of mesenchymal origin, these cells are morphologically and even molecularly- at least concerning the classical marker genes- indistinguishable from similar lineage cells, particularly fibroblasts. Methods Here we used microarray-based gene expression and global DNA methylation analyses as well as accompanying computational tools in order to specify differences between MSCs and fibroblasts, to further unravel potential identity genes and to highlight MSC signaling pathways with regard to their trophic and immunosuppressive action. Results We identified 1352 differentially expressed genes, of which in the MSCs there is a strong signature for e.g., KRAS signaling, known to play essential role in stemness maintenance, regulation of coagulation and complement being decisive for resolving inflammatory processes, as well as of wound healing particularly important for their regenerative capacity. Genes upregulated in fibroblasts addressed predominately transcription and biosynthetic processes and mapped morphological features of the tissue. Concerning the cellular identity, we specified the already known HOX code for MSCs, established a potential HOX code for fibroblasts, and linked certain HOX genes to functional cell-type-specific properties. Accompanied methylation profiles revealed numerous regions, especially in HOX genes, being differentially methylated, which might provide additional biomarker potential. Discussion Conclusively, transcriptomic together with epigenetic signatures can be successfully be used for the definition (cellular identity) of MSCs versus fibroblasts as well as for the determination of the superior functional properties of MSCs, such as their immunomodulatory potential.
Collapse
Affiliation(s)
- Bettina Budeus
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Clinical Cooperation Group Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Clinical Cooperation Group Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Hanna Sentek
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
4
|
Sentek H, Klein D. Lung-Resident Mesenchymal Stem Cell Fates within Lung Cancer. Cancers (Basel) 2021; 13:cancers13184637. [PMID: 34572864 PMCID: PMC8472774 DOI: 10.3390/cancers13184637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Lung cancer remains the leading cause of cancer-related deaths worldwide. Herein, the heterogeneous tumor stroma decisively impacts on tumor progression, therapy resistance, and, thus, poor clinical outcome. Among the numerous non-epithelial cells constructing the complex environment of lung carcinomas, mesenchymal stem cells (MSC) gained attraction being stromal precursor cells that could be recruited and ‘educated’ by lung cancer cells to adopt a tumor-associated MSC phenotype, serve as source for activated fibroblasts and presumably for vascular mural cells finally reinforcing tumor progression. Lung-resident MSCs should be considered as ‘local MSCs in stand by’ ready to be arranged within the cancer stroma. Abstract Lung-resident mesenchymal stem cells (LR-MSCs) are non-hematopoietic multipotent stromal cells that predominately reside adventitial within lung blood vessels. Based on their self-renewal and differentiation properties, LR-MSCs turned out to be important regulators of normal lung homeostasis. LR-MSCs exert beneficial effects mainly by local secretion of various growth factors and cytokines that in turn foster pulmonary regeneration including suppression of inflammation. At the same time, MSCs derived from various tissues of origins represent the first choice of cells for cell-based therapeutic applications in clinical medicine. Particularly for various acute as well as chronic lung diseases, the therapeutic applications of exogenous MSCs were shown to mediate beneficial effects, hereby improving lung function and survival. In contrast, endogenous MSCs of normal lungs seem not to be sufficient for lung tissue protection or repair following a pathological trigger; LR-MSCs could even contribute to initiation and/or progression of lung diseases, particularly lung cancer because of their inherent tropism to migrate towards primary tumors and metastatic sites. However, the role of endogenous LR-MSCs to be multipotent tumor-associated (stromal) precursors remains to be unraveled. Here, we summarize the recent knowledge how ‘cancer-educated’ LR-MSCs impact on lung cancer with a focus on mesenchymal stem cell fates.
Collapse
Affiliation(s)
| | - Diana Klein
- Correspondence: ; Tel.: +49-(0)-201-7238-3342
| |
Collapse
|
5
|
Steens J, Klar L, Hansel C, Slama A, Hager T, Jendrossek V, Aigner C, Klein D. The vascular nature of lung-resident mesenchymal stem cells. Stem Cells Transl Med 2020; 10:128-143. [PMID: 32830458 PMCID: PMC7780817 DOI: 10.1002/sctm.20-0191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Human lungs bear their own reservoir of endogenous mesenchymal stem cells (MSCs). Although described as located perivascular, the cellular identity of primary lung MSCs remains elusive. Here we investigated the vascular nature of lung‐resident MSCs (LR‐MSCs) using healthy human lung tissue. LR‐MSCs predominately reside within the vascular stem cell niche, the so‐called vasculogenic zone of adult lung arteries. Primary LR‐MSCs isolated from normal human lung tissue showed typical MSC characteristics in vitro and were phenotypically and functionally indistinguishable from MSCs derived from the vascular wall of adult human blood vessels (VW‐MSCs). Moreover, LR‐MSCs expressed the VW‐MSC‐specific HOX code a characteristic to discriminate VW‐MSCs from phenotypical similar cells. Thus, LR‐MSC should be considered as VW‐MSCs. Immunofluorescent analyses of non‐small lung cancer (NSCLC) specimen further confirmed the vascular adventitia as stem cell niche for LR‐MSCs, and revealed their mobilization and activation in NSCLC progression. These findings have implications for understanding the role of MSC in normal lung physiology and pulmonary diseases, as well as for the rational design of additional therapeutic approaches.
Collapse
Affiliation(s)
- Jennifer Steens
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Lea Klar
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Christine Hansel
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Alexis Slama
- Department of Thoracic Surgery and Surgical Endoscopy, Ruhrlandklinik-University Clinic Essen, Essen, Germany
| | - Thomas Hager
- Institute of Pathology, University Clinic Essen, University of Duisburg-Essen, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery and Surgical Endoscopy, Ruhrlandklinik-University Clinic Essen, Essen, Germany
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| |
Collapse
|