1
|
Martinez-Seidel F, Suwanchaikasem P, Gentry-Torfer D, Rajarathinam Y, Ebert A, Erban A, Firmino A, Nie S, Leeming M, Williamson N, Roessner U, Kopka J, Boughton BA. Remodelled ribosomal populations synthesize a specific proteome in proliferating plant tissue during cold. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230384. [PMID: 40045790 PMCID: PMC11883437 DOI: 10.1098/rstb.2023.0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/21/2024] [Accepted: 09/11/2024] [Indexed: 03/09/2025] Open
Abstract
Plant acclimation occurs through system-wide mechanisms that include proteome shifts, some of which occur at the level of protein synthesis. All proteins are synthesized by ribosomes. Rather than being monolithic, transcript-to-protein translation machines, ribosomes can be selective and cause proteome shifts. In this study, we use apical root meristems of germinating seedlings of the monocotyledonous plant barley as a model to examine changes in protein abundance and synthesis during cold acclimation. We measured metabolic and physiological parameters that allowed us to compare protein synthesis in the cold to optimal rearing temperatures. We demonstrated that the synthesis and assembly of ribosomal proteins are independent processes in root proliferative tissue. We report the synthesis and accumulation of various macromolecular complexes and propose how ribosome compositional shifts may be associated with functional proteome changes that are part of successful cold acclimation. Our study indicates that translation initiation is limiting during cold acclimation while the ribosome population is remodelled. The distribution of the triggered ribosomal protein heterogeneity suggests that altered compositions may confer 60S subunits selective association capabilities towards translation initiation complexes. To what extent selective translation depends on heterogeneous ribo-proteome compositions in barley proliferative root tissue remains a yet unresolved question.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Federico Martinez-Seidel
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pipob Suwanchaikasem
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Dione Gentry-Torfer
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Yogeswari Rajarathinam
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alina Ebert
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Alexander Erban
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alexandre Firmino
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Shuai Nie
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Leeming
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
- School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas Williamson
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Research School of Biology, The Australian National University, Acton, Australia
| | - Joachim Kopka
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Berin A. Boughton
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- La Trobe Institute of Sustainable Agriculture and Food, La Trobe University, Bundoora, Victoria3083, Australia
| |
Collapse
|
2
|
Rajarathinam Y, Wittemeier L, Gutekunst K, Hagemann M, Kopka J. Dynamic photosynthetic labeling and carbon-positional mass spectrometry monitor in vivo RUBISCO carbon assimilation rates. PLANT PHYSIOLOGY 2025; 197:kiaf020. [PMID: 39836073 PMCID: PMC11809591 DOI: 10.1093/plphys/kiaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE (RUBISCO) is the most abundant enzyme and CO2 bio-sequestration system on Earth. Its in vivo activity is usually determined by 14CO2 incorporation into 3-phosphoglycerate (3PGA). However, the radiometric analysis of 3PGA does not distinguish carbon positions. Hence, RUBISCO activity that fixes carbon into the 1-C position of 3PGA and Calvin-Benson-Bassham (CBB) cycle activities that redistribute carbon into its 2-C and 3-C positions are not resolved. This study aims to develop technology that differentiates between these activities. In source fragmentation of gas chromatography-mass spectrometry (GC-MS) enables paired isotopologue distribution analyses of fragmented substructures and the complete metabolite structure. GC-MS measurements after dynamic photosynthetic 13CO2 labeling allowed quantification of the 13C fractional enrichment (E13C) and molar carbon assimilation rates (A13C) at carbon position 1-C of 3PGA by combining E13C from carbon positions 2,3-C2 and 1,2,3-C3 with quantification of 3PGA concentrations. We validated the procedure using two GC-time of flight-MS instruments, operated at nominal or high mass resolution, and tested the expected 3PGA positional labeling by in vivo glycolysis of positional labeled glucose isotopomers. Mutant analysis of the highly divergent GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASEs (GAPDH1 and 2) from Synechocystis sp. PCC 6803 revealed full inactivation of the CBB cycle with maintained RUBISCO activity in Δgapdh2 and a CBB cycle modulating role of GAPDH1 under fluctuating CO2 supply. RUBISCO activity in the CBB-deficient Δgapdh2 can re-assimilate CO2 released by catabolic pathways. We suggest that RUBISCO activity in Synechocystis can scavenge carbon lost through the pentose phosphate pathway or other cellular decarboxylation reactions.
Collapse
Affiliation(s)
- Yogeswari Rajarathinam
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
- Environmental and Biochemical Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Luisa Wittemeier
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Kirstin Gutekunst
- Molecular Plant Physiology, Bioenergetics in Photoautotrophs, University Kassel, Heinrich-Plett-Straße 40, D-34132 Kassel, Germany
| | - Martin Hagemann
- Plant Physiology Department, Institute of Biological Sciences, Rostock University, Albert-Einstein-Straße 3, D-18059 Rostock, Germany
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
3
|
Gentry-Torfer D, Murillo E, Barrington CL, Nie S, Leeming MG, Suwanchaikasem P, Williamson NA, Roessner U, Boughton BA, Kopka J, Martinez-Seidel F. Streamlining Protein Fractional Synthesis Rates Using SP3 Beads and Stable Isotope Mass Spectrometry: A Case Study on the Plant Ribosome. Bio Protoc 2024; 14:e4981. [PMID: 38737506 PMCID: PMC11082790 DOI: 10.21769/bioprotoc.4981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 05/14/2024] Open
Abstract
Ribosomes are an archetypal ribonucleoprotein assembly. Due to ribosomal evolution and function, r-proteins share specific physicochemical similarities, making the riboproteome particularly suited for tailored proteome profiling methods. Moreover, the structural proteome of ribonucleoprotein assemblies reflects context-dependent functional features. Thus, characterizing the state of riboproteomes provides insights to uncover the context-dependent functionality of r-protein rearrangements, as they relate to what has been termed the ribosomal code, a concept that parallels that of the histone code, in which chromatin rearrangements influence gene expression. Compared to high-resolution ribosomal structures, omics methods lag when it comes to offering customized solutions to close the knowledge gap between structure and function that currently exists in riboproteomes. Purifying the riboproteome and subsequent shot-gun proteomics typically involves protein denaturation and digestion with proteases. The results are relative abundances of r-proteins at the ribosome population level. We have previously shown that, to gain insight into the stoichiometry of individual proteins, it is necessary to measure by proteomics bound r-proteins and normalize their intensities by the sum of r-protein abundances per ribosomal complex, i.e., 40S or 60S subunits. These calculations ensure that individual r-protein stoichiometries represent the fraction of each family/paralog relative to the complex, effectively revealing which r-proteins become substoichiometric in specific physiological scenarios. Here, we present an optimized method to profile the riboproteome of any organism as well as the synthesis rates of r-proteins determined by stable isotope-assisted mass spectrometry. Our method purifies the r-proteins in a reversibly denatured state, which offers the possibility for combined top-down and bottom-up proteomics. Our method offers a milder native denaturation of the r-proteome via a chaotropic GuHCl solution as compared with previous studies that use irreversible denaturation under highly acidic conditions to dissociate rRNA and r-proteins. As such, our method is better suited to conserve post-translational modifications (PTMs). Subsequently, our method carefully considers the amino acid composition of r-proteins to select an appropriate protease for digestion. We avoid non-specific protease cleavage by increasing the pH of our standardized r-proteome dilutions that enter the digestion pipeline and by using a digestion buffer that ensures an optimal pH for a reliable protease digestion process. Finally, we provide the R package ProtSynthesis to study the fractional synthesis rates of r-proteins. The package uses physiological parameters as input to determine peptide or protein fractional synthesis rates. Once the physiological parameters are measured, our equations allow a fair comparison between treatments that alter the biological equilibrium state of the system under study. Our equations correct peptide enrichment using enrichments in soluble amino acids, growth rates, and total protein accumulation. As a means of validation, our pipeline fails to find "false" enrichments in non-labeled samples while also filtering out proteins with multiple unique peptides that have different enrichment values, which are rare in our datasets. These two aspects reflect the accuracy of our tool. Our method offers the possibility of elucidating individual r-protein family/paralog abundances, PTM status, fractional synthesis rates, and dynamic assembly into ribosomal complexes if top-down and bottom-up proteomic approaches are used concomitantly, taking one step further into mapping the native and dynamic status of the r-proteome onto high-resolution ribosome structures. In addition, our method can be used to study the proteomes of all macromolecular assemblies that can be purified, although purification is the limiting step, and the efficacy and accuracy of the proteases may be limited depending on the digestion requirements. Key features • Efficient purification of the ribosomal proteome: streamlined procedure for the specific purification of the ribosomal proteome or complex Ome. • Accurate calculation of fractional synthesis rates: robust method for calculating fractional protein synthesis rates in macromolecular complexes under different physiological steady states. • Holistic ribosome methodology focused on plants: comprehensive approach that provides insights into the ribosomes and translational control of plants, demonstrated using cold acclimation [1]. • Tailored strategies for stable isotope labeling in plants: methodology focusing on materials and labeling considerations specific to free and proteinogenic amino acid analysis [2].
Collapse
Affiliation(s)
- Dione Gentry-Torfer
- Applied Metabolome Analysis, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- School of Biosciences, The University of Melbourne, Parkville, Australia
| | - Ester Murillo
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Chloe L. Barrington
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
| | - Shuai Nie
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Australia
| | - Michael G. Leeming
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Australia
- School of Chemistry, The University of Melbourne, Parkville, Australia
| | | | - Nicholas A. Williamson
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Australia
| | - Ute Roessner
- School of Biosciences, The University of Melbourne, Parkville, Australia
- Research School of Biology, The Australian National University, Acton, Australia
| | - Berin A. Boughton
- School of Biosciences, The University of Melbourne, Parkville, Australia
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Australia
| | - Joachim Kopka
- Applied Metabolome Analysis, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Federico Martinez-Seidel
- Applied Metabolome Analysis, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- School of Biosciences, The University of Melbourne, Parkville, Australia
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
4
|
Rosa-Téllez S, Alcántara-Enguídanos A, Martínez-Seidel F, Casatejada-Anchel R, Saeheng S, Bailes CL, Erban A, Barbosa-Medeiros D, Alepúz P, Matus JT, Kopka J, Muñoz-Bertomeu J, Krueger S, Roje S, Fernie AR, Ros R. The serine-glycine-one-carbon metabolic network orchestrates changes in nitrogen and sulfur metabolism and shapes plant development. THE PLANT CELL 2024; 36:404-426. [PMID: 37804096 PMCID: PMC10827325 DOI: 10.1093/plcell/koad256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023]
Abstract
L-serine (Ser) and L-glycine (Gly) are critically important for the overall functioning of primary metabolism. We investigated the interaction of the phosphorylated pathway of Ser biosynthesis (PPSB) with the photorespiration-associated glycolate pathway of Ser biosynthesis (GPSB) using Arabidopsis thaliana PPSB-deficient lines, GPSB-deficient mutants, and crosses of PPSB with GPSB mutants. PPSB-deficient lines mainly showed retarded primary root growth. Mutation of the photorespiratory enzyme Ser-hydroxymethyltransferase 1 (SHMT1) in a PPSB-deficient background resumed primary root growth and induced a change in the plant metabolic pattern between roots and shoots. Grafting experiments demonstrated that metabolic changes in shoots were responsible for the changes in double mutant development. PPSB disruption led to a reduction in nitrogen (N) and sulfur (S) contents in shoots and a general transcriptional response to nutrient deficiency. Disruption of SHMT1 boosted the Gly flux out of the photorespiratory cycle, which increased the levels of the one-carbon (1C) metabolite 5,10-methylene-tetrahydrofolate and S-adenosylmethionine. Furthermore, disrupting SHMT1 reverted the transcriptional response to N and S deprivation and increased N and S contents in shoots of PPSB-deficient lines. Our work provides genetic evidence of the biological relevance of the Ser-Gly-1C metabolic network in N and S metabolism and in interorgan metabolic homeostasis.
Collapse
Affiliation(s)
- Sara Rosa-Téllez
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain
| | - Andrea Alcántara-Enguídanos
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain
| | | | - Ruben Casatejada-Anchel
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain
| | - Sompop Saeheng
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Clayton L Bailes
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Paula Alepúz
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain
- Departament de Bioquímica y Biologia Molecular, Facultat de Biologia, Universitat de València, 46100 Burjassot, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology, I²SysBio, Universitat de València—CSIC, 46908 Paterna, Spain
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Jesús Muñoz-Bertomeu
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain
| | - Stephan Krueger
- Institute for Plant Sciences, University of Cologne, Zülpicherstraße 47b, 50674 Cologne, Germany
| | - Sanja Roje
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Roc Ros
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain
| |
Collapse
|
5
|
Retention Indices for Naturally-Occurring Chiral and Achiral Compounds on Common Gas Chromatography Chiral Stationary Phases. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
6
|
Vyse K, Schaarschmidt S, Erban A, Kopka J, Zuther E. Specific CBF transcription factors and cold-responsive genes fine-tune the early triggering response after acquisition of cold priming and memory. PHYSIOLOGIA PLANTARUM 2022; 174:e13740. [PMID: 35776365 DOI: 10.1111/ppl.13740] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Plants need to adapt to fluctuating temperatures throughout their lifetime. Previous research showed that Arabidopsis memorizes a first cold stress (priming) and improves its primed freezing tolerance further when subjected to a second similar stress after a lag phase. This study investigates primary metabolomic and transcriptomic changes during early cold priming or triggering after 3 days at 4°C interrupted by a memory phase. DREB1 family transcription factors DREB1C/CBF2, DREB1D/CBF4, DREB1E/DDF2, and DREB1F/DDF1 were strongly significantly induced throughout the entire triggering. During triggering, genes encoding Late Embryogenesis Abundant (LEA), antifreeze proteins or detoxifiers of reactive oxygen species (ROS) were higher expressed compared with priming. Examples of early triggering responders were xyloglucan endotransglucosylase/hydrolase genes encoding proteins involved in cell wall remodeling, while late responders were identified to act in fine-tuning the stress response and developmental regulation. Induction of non-typical members of the DREB subfamily of ERF/AP2 transcription factors, the relatively small number of induced CBF regulon genes and a slower accumulation of selected cold stress associated metabolites indicate that a cold triggering stimulus might be sensed as milder stress in plants compared with priming. Further, strong induction of CBF4 throughout triggering suggests a unique function of this gene for the response to alternating temperatures.
Collapse
Affiliation(s)
- Kora Vyse
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Ellen Zuther
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
7
|
Lima VF, Erban A, Daubermann AG, Freire FBS, Porto NP, Cândido-Sobrinho SA, Medeiros DB, Schwarzländer M, Fernie AR, Dos Anjos L, Kopka J, Daloso DM. Establishment of a GC-MS-based 13 C-positional isotopomer approach suitable for investigating metabolic fluxes in plant primary metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1213-1233. [PMID: 34486764 DOI: 10.1111/tpj.15484] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
13 C-Metabolic flux analysis (13 C-MFA) has greatly contributed to our understanding of plant metabolic regulation. However, the generation of detailed in vivo flux maps remains a major challenge. Flux investigations based on nuclear magnetic resonance have resolved small networks with high accuracy. Mass spectrometry (MS) approaches have broader potential, but have hitherto been limited in their power to deduce flux information due to lack of atomic level position information. Herein we established a gas chromatography (GC) coupled to MS-based approach that provides 13 C-positional labelling information in glucose, malate and glutamate (Glu). A map of electron impact (EI)-mediated MS fragmentation was created and validated by 13 C-positionally labelled references via GC-EI-MS and GC-atmospheric pressure chemical ionization-MS technologies. The power of the approach was revealed by analysing previous 13 C-MFA data from leaves and guard cells, and 13 C-HCO3 labelling of guard cells harvested in the dark and after the dark-to-light transition. We demonstrated that the approach is applicable to established GC-EI-MS-based 13 C-MFA without the need for experimental adjustment, but will benefit in the future from paired analyses by the two GC-MS platforms. We identified specific glucose carbon atoms that are preferentially labelled by photosynthesis and gluconeogenesis, and provide an approach to investigate the phosphoenolpyruvate carboxylase (PEPc)-derived 13 C-incorporation into malate and Glu. Our results suggest that gluconeogenesis and the PEPc-mediated CO2 assimilation into malate are activated in a light-independent manner in guard cells. We further highlight that the fluxes from glycolysis and PEPc toward Glu are restricted by the mitochondrial thioredoxin system in illuminated leaves.
Collapse
Affiliation(s)
- Valéria F Lima
- LabPLant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brazil
| | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - André G Daubermann
- Departamento de Biologia, Setor de Fisiologia Vegetal, Universidade Federal de Lavras, Lavras-MG, 37200-900, Brazil
| | - Francisco Bruno S Freire
- LabPLant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brazil
| | - Nicole P Porto
- LabPLant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brazil
| | - Silvio A Cândido-Sobrinho
- LabPLant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brazil
| | - David B Medeiros
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, Westfälische-Wilhelms-Universität Münster, Münster, D-48143, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Leticia Dos Anjos
- Departamento de Biologia, Setor de Fisiologia Vegetal, Universidade Federal de Lavras, Lavras-MG, 37200-900, Brazil
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Danilo M Daloso
- LabPLant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brazil
| |
Collapse
|
8
|
Nieva AS, Romero FM, Erban A, Carrasco P, Ruiz OA, Kopka J. Metabolic Profiling and Metabolite Correlation Network Analysis Reveal That Fusarium solani Induces Differential Metabolic Responses in Lotus japonicus and Lotus tenuis against Severe Phosphate Starvation. J Fungi (Basel) 2021; 7:765. [PMID: 34575803 PMCID: PMC8468338 DOI: 10.3390/jof7090765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/20/2023] Open
Abstract
Root fungal endophytes are essential mediators of plant nutrition under mild stress conditions. However, variations in the rhizosphere environment, such as nutrient depletion, could result in a stressful situation for both partners, shifting mutualistic to nonconvenient interactions. Mycorrhizal fungi and dark septate endophytes (DSEs) have demonstrated their ability to facilitate phosphate (Pi) acquisition. However, few studies have investigated other plant-fungal interactions that take place in the root environment with regard to phosphate nutrition. In the present research work, we aimed to analyze the effect of extreme Pi starvation and the fungal endophyte Fusarium solani on the model Lotus japonicus and the crop L. tenuis. We conducted metabolomics analysis based on gas chromatography-mass spectrometry (GC-MS) on plant tissues under optimal conditions, severe Pi starvation and F.solani presence. By combining statistical and correlation network analysis strategies, we demonstrated the differential outcomes of the two plant species against the combination of treatments. The combination of nutritional stress and Fusarium presence activated significant modifications in the metabolism of L. japonicus affecting the levels of sugars, polyols and some amino acids. Our results display potential markers for further inspection of the factors related to plant nutrition and plant-fungal interactions.
Collapse
Affiliation(s)
- Amira Susana Nieva
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), Am Mühlenberg 1, 14476 Potsdam, Germany; (A.E.); (J.K.)
- Postdoctoral Fellow—Deutscher Akademischer Austauschdienst (DAAD), Kennedyallee 50, 53175 Bonn, Germany
| | - Fernando Matías Romero
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martin (UNSAM), Av. Intendente Marino Km 8.2, Chascomús 7130, Argentina; (F.M.R.); (O.A.R.)
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), Am Mühlenberg 1, 14476 Potsdam, Germany; (A.E.); (J.K.)
| | - Pedro Carrasco
- Institut de Biotecnològia i Biomedicina (BIOTECMED), Universitat de València, Av. Doctor Moliner 50, 46100 Burjassot, Spain;
| | - Oscar Adolfo Ruiz
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martin (UNSAM), Av. Intendente Marino Km 8.2, Chascomús 7130, Argentina; (F.M.R.); (O.A.R.)
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), Am Mühlenberg 1, 14476 Potsdam, Germany; (A.E.); (J.K.)
| |
Collapse
|
9
|
Characterization of the Heat-Stable Proteome during Seed Germination in Arabidopsis with Special Focus on LEA Proteins. Int J Mol Sci 2021; 22:ijms22158172. [PMID: 34360938 PMCID: PMC8347141 DOI: 10.3390/ijms22158172] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/22/2022] Open
Abstract
During seed germination, desiccation tolerance is lost in the radicle with progressing radicle protrusion and seedling establishment. This process is accompanied by comprehensive changes in the metabolome and proteome. Germination of Arabidopsis seeds was investigated over 72 h with special focus on the heat-stable proteome including late embryogenesis abundant (LEA) proteins together with changes in primary metabolites. Six metabolites in dry seeds known to be important for seed longevity decreased during germination and seedling establishment, while all other metabolites increased simultaneously with activation of growth and development. Thermo-stable proteins were associated with a multitude of biological processes. In the heat-stable proteome, a relatively similar proportion of fully ordered and fully intrinsically disordered proteins (IDP) was discovered. Highly disordered proteins were found to be associated with functional categories development, protein, RNA and stress. As expected, the majority of LEA proteins decreased during germination and seedling establishment. However, four germination-specific dehydrins were identified, not present in dry seeds. A network analysis of proteins, metabolites and amino acids generated during the course of germination revealed a highly connected LEA protein network.
Collapse
|
10
|
Martinez-Seidel F, Beine-Golovchuk O, Hsieh YC, Eshraky KE, Gorka M, Cheong BE, Jimenez-Posada EV, Walther D, Skirycz A, Roessner U, Kopka J, Pereira Firmino AA. Spatially Enriched Paralog Rearrangements Argue Functionally Diverse Ribosomes Arise during Cold Acclimation in Arabidopsis. Int J Mol Sci 2021; 22:6160. [PMID: 34200446 PMCID: PMC8201131 DOI: 10.3390/ijms22116160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Ribosome biogenesis is essential for plants to successfully acclimate to low temperature. Without dedicated steps supervising the 60S large subunits (LSUs) maturation in the cytosol, e.g., Rei-like (REIL) factors, plants fail to accumulate dry weight and fail to grow at suboptimal low temperatures. Around REIL, the final 60S cytosolic maturation steps include proofreading and assembly of functional ribosomal centers such as the polypeptide exit tunnel and the P-Stalk, respectively. In consequence, these ribosomal substructures and their assembly, especially during low temperatures, might be changed and provoke the need for dedicated quality controls. To test this, we blocked ribosome maturation during cold acclimation using two independent reil double mutant genotypes and tested changes in their ribosomal proteomes. Additionally, we normalized our mutant datasets using as a blank the cold responsiveness of a wild-type Arabidopsis genotype. This allowed us to neglect any reil-specific effects that may happen due to the presence or absence of the factor during LSU cytosolic maturation, thus allowing us to test for cold-induced changes that happen in the early nucleolar biogenesis. As a result, we report that cold acclimation triggers a reprogramming in the structural ribosomal proteome. The reprogramming alters the abundance of specific RP families and/or paralogs in non-translational LSU and translational polysome fractions, a phenomenon known as substoichiometry. Next, we tested whether the cold-substoichiometry was spatially confined to specific regions of the complex. In terms of RP proteoforms, we report that remodeling of ribosomes after a cold stimulus is significantly constrained to the polypeptide exit tunnel (PET), i.e., REIL factor binding and functional site. In terms of RP transcripts, cold acclimation induces changes in RP families or paralogs that are significantly constrained to the P-Stalk and the ribosomal head. The three modulated substructures represent possible targets of mechanisms that may constrain translation by controlled ribosome heterogeneity. We propose that non-random ribosome heterogeneity controlled by specialized biogenesis mechanisms may contribute to a preferential or ultimately even rigorous selection of transcripts needed for rapid proteome shifts and successful acclimation.
Collapse
Affiliation(s)
- Federico Martinez-Seidel
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Olga Beine-Golovchuk
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- Heidelberg University, Biochemie-Zentrum, Nuclear Pore Complex and Ribosome Assembly, 69120 Heidelberg, Germany
| | - Yin-Chen Hsieh
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- Institute for Arctic and Marine Biology, UiT Arctic University of Norway, 9037 Tromsø, Norway
| | - Kheloud El Eshraky
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Michal Gorka
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Bo-Eng Cheong
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Malaysia
| | - Erika V. Jimenez-Posada
- Grupo de Biotecnología-Productos Naturales, Universidad Tecnológica de Pereira, Pereira 660003, Colombia;
- Emerging Infectious Diseases and Tropical Medicine Research Group—Sci-Help, Pereira 660009, Colombia
| | - Dirk Walther
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Aleksandra Skirycz
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Joachim Kopka
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Alexandre Augusto Pereira Firmino
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| |
Collapse
|
11
|
The Impact of Metabolic Scion-Rootstock Interactions in Different Grapevine Tissues and Phloem Exudates. Metabolites 2021; 11:metabo11060349. [PMID: 34070718 PMCID: PMC8228596 DOI: 10.3390/metabo11060349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 12/28/2022] Open
Abstract
In viticulture, grafting is used to propagate Phylloxera-susceptible European grapevines, thereby using resistant American rootstocks. Although scion–rootstock reciprocal signaling is essential for the formation of a proper vascular union and for coordinated growth, our knowledge of graft partner interactions is very limited. In order to elucidate the scale and the content of scion–rootstock metabolic interactions, we profiled the metabolome of eleven graft combination in leaves, stems, and phloem exudate from both above and below the graft union 5–6 months after grafting. We compared the metabolome of scions vs. rootstocks of homografts vs. heterografts and investigated the reciprocal effect of the rootstock on the scion metabolome. This approach revealed that (1) grafting has a minor impact on the metabolome of grafted grapevines when tissues and genotypes were compared, (2) heterografting affects rootstocks more than scions, (3) the presence of a heterologous grafting partner increases defense-related compounds in both scion and rootstocks in shorter and longer distances from the graft, and (4) leaves were revealed as the best tissue to search for grafting-related metabolic markers. These results will provide a valuable metabolomics resource for scion–rootstock interaction studies and will facilitate future efforts on the identification of metabolic markers for important agronomic traits in grafted grapevines.
Collapse
|
12
|
Martinez-Seidel F, Suwanchaikasem P, Nie S, Leeming MG, Pereira Firmino AA, Williamson NA, Kopka J, Roessner U, Boughton BA. Membrane-Enriched Proteomics Link Ribosome Accumulation and Proteome Reprogramming With Cold Acclimation in Barley Root Meristems. FRONTIERS IN PLANT SCIENCE 2021; 12:656683. [PMID: 33995454 PMCID: PMC8121087 DOI: 10.3389/fpls.2021.656683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/22/2021] [Indexed: 05/17/2023]
Abstract
Due to their sessile nature, plants rely on root systems to mediate many biotic and abiotic cues. To overcome these challenges, the root proteome is shaped to specific responses. Proteome-wide reprogramming events are magnified in meristems due to their active protein production. Using meristems as a test system, here, we study the major rewiring that plants undergo during cold acclimation. We performed tandem mass tag-based bottom-up quantitative proteomics of two consecutive segments of barley seminal root apexes subjected to suboptimal temperatures. After comparing changes in total and ribosomal protein (RP) fraction-enriched contents with shifts in individual protein abundances, we report ribosome accumulation accompanied by an intricate translational reprogramming in the distal apex zone. Reprogramming ranges from increases in ribosome biogenesis to protein folding factors and suggests roles for cold-specific RP paralogs. Ribosome biogenesis is the largest cellular investment; thus, the vast accumulation of ribosomes and specific translation-related proteins during cold acclimation could imply a divergent ribosomal population that would lead to a proteome shift across the root. Consequently, beyond the translational reprogramming, we report a proteome rewiring. First, triggered protein accumulation includes spliceosome activity in the root tip and a ubiquitous upregulation of glutathione production and S-glutathionylation (S-GSH) assemblage machineries in both root zones. Second, triggered protein depletion includes intrinsically enriched proteins in the tip-adjacent zone, which comprise the plant immune system. In summary, ribosome and translation-related protein accumulation happens concomitantly to a proteome reprogramming in barley root meristems during cold acclimation. The cold-accumulated proteome is functionally implicated in feedbacking transcript to protein translation at both ends and could guide cold acclimation.
Collapse
Affiliation(s)
- Federico Martinez-Seidel
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Shuai Nie
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC, Australia
| | - Michael G. Leeming
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC, Australia
- School of Chemistry, The University of Melbourne, Parkville, VIC, Australia
| | | | - Nicholas A. Williamson
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Joachim Kopka
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Berin A. Boughton
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Australian National Phenome Centre, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
13
|
Cognitive analysis of metabolomics data for systems biology. Nat Protoc 2021; 16:1376-1418. [PMID: 33483720 DOI: 10.1038/s41596-020-00455-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/27/2020] [Indexed: 01/30/2023]
Abstract
Cognitive computing is revolutionizing the way big data are processed and integrated, with artificial intelligence (AI) natural language processing (NLP) platforms helping researchers to efficiently search and digest the vast scientific literature. Most available platforms have been developed for biomedical researchers, but new NLP tools are emerging for biologists in other fields and an important example is metabolomics. NLP provides literature-based contextualization of metabolic features that decreases the time and expert-level subject knowledge required during the prioritization, identification and interpretation steps in the metabolomics data analysis pipeline. Here, we describe and demonstrate four workflows that combine metabolomics data with NLP-based literature searches of scientific databases to aid in the analysis of metabolomics data and their biological interpretation. The four procedures can be used in isolation or consecutively, depending on the research questions. The first, used for initial metabolite annotation and prioritization, creates a list of metabolites that would be interesting for follow-up. The second workflow finds literature evidence of the activity of metabolites and metabolic pathways in governing the biological condition on a systems biology level. The third is used to identify candidate biomarkers, and the fourth looks for metabolic conditions or drug-repurposing targets that the two diseases have in common. The protocol can take 1-4 h or more to complete, depending on the processing time of the various software used.
Collapse
|
14
|
Franzisky BL, Geilfus CM, Romo-Pérez ML, Fehrle I, Erban A, Kopka J, Zörb C. Acclimatisation of guard cell metabolism to long-term salinity. PLANT, CELL & ENVIRONMENT 2021; 44:870-884. [PMID: 33251628 DOI: 10.1111/pce.13964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Stomatal movements are enabled by changes in guard cell turgor facilitated via transient accumulation of inorganic and organic ions imported from the apoplast or biosynthesized within guard cells. Under salinity, excess salt ions accumulate within plant tissues resulting in osmotic and ionic stress. To elucidate whether (a) Na+ and Cl- concentrations increase in guard cells in response to long-term NaCl exposure and how (b) guard cell metabolism acclimates to the anticipated stress, we profiled the ions and primary metabolites of leaves, the apoplast and isolated guard cells at darkness and during light, that is, closed and fully opened stomata. In contrast to leaves, the primary metabolism of guard cell preparations remained predominantly unaffected by increased salt ion concentrations. Orchestrated reductions of stomatal aperture and guard cell osmolyte synthesis were found, but unlike in leaves, no increases of stress responsive metabolites or compatible solutes occurred. Diverging regulation of guard cell metabolism might be a prerequisite to facilitate the constant adjustment of turgor that affects aperture. Moreover, the photoperiod-dependent sucrose accumulation in the apoplast and guard cells changed to a permanently replete condition under NaCl, indicating that stress-related photosynthate accumulation in leaves contributes to the permanent closing response of stomata under stress.
Collapse
Affiliation(s)
| | - Christoph-Martin Geilfus
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Berlin, Germany
| | | | - Ines Fehrle
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Christian Zörb
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
15
|
Scheurer NM, Rajarathinam Y, Timm S, Köbler C, Kopka J, Hagemann M, Wilde A. Homologs of Circadian Clock Proteins Impact the Metabolic Switch Between Light and Dark Growth in the Cyanobacterium Synechocystis sp. PCC 6803. FRONTIERS IN PLANT SCIENCE 2021; 12:675227. [PMID: 34239525 PMCID: PMC8258377 DOI: 10.3389/fpls.2021.675227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/26/2021] [Indexed: 05/06/2023]
Abstract
The putative circadian clock system of the facultative heterotrophic cyanobacterial strain Synechocystis sp. PCC 6803 comprises the following three Kai-based systems: a KaiABC-based potential oscillator that is linked to the SasA-RpaA two-component output pathway and two additional KaiBC systems without a cognate KaiA component. Mutants lacking the genes encoding the KaiAB1C1 components or the response regulator RpaA show reduced growth in light/dark cycles and do not show heterotrophic growth in the dark. In the present study, the effect of these mutations on central metabolism was analyzed by targeted and non-targeted metabolite profiling. The strongest metabolic changes were observed in the dark in ΔrpaA and, to a lesser extent, in the ΔkaiAB1C1 mutant. These observations included the overaccumulation of 2-phosphoglycolate, which correlated with the overaccumulation of the RbcL subunit in the mutants, and taken together, these data suggest enhanced RubisCO activity in the dark. The imbalanced carbon metabolism in the ΔrpaA mutant extended to the pyruvate family of amino acids, which showed increased accumulation in the dark. Hence, the deletion of the response regulator rpaA had a more pronounced effect on metabolism than the deletion of the kai genes. The larger impact of the rpaA mutation is in agreement with previous transcriptomic analyses and likely relates to a KaiAB1C1-independent function as a transcription factor. Collectively, our data demonstrate an important role of homologs of clock proteins in Synechocystis for balanced carbon and nitrogen metabolism during light-to-dark transitions.
Collapse
Affiliation(s)
- Nina M. Scheurer
- Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Yogeswari Rajarathinam
- Applied Metabolome Analysis, Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Stefan Timm
- Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Christin Köbler
- Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Joachim Kopka
- Applied Metabolome Analysis, Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Martin Hagemann
- Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, Freiburg, Germany
- *Correspondence: Annegret Wilde
| |
Collapse
|
16
|
Sangpong L, Khaksar G, Pinsorn P, Oikawa A, Sasaki R, Erban A, Watanabe M, Wangpaiboon K, Tohge T, Kopka J, Hoefgen R, Saito K, Sirikantaramas S. Assessing Dynamic Changes of Taste-Related Primary Metabolism During Ripening of Durian Pulp Using Metabolomic and Transcriptomic Analyses. FRONTIERS IN PLANT SCIENCE 2021; 12:687799. [PMID: 34220909 PMCID: PMC8250156 DOI: 10.3389/fpls.2021.687799] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/24/2021] [Indexed: 05/07/2023]
Abstract
Durian is an economically important fruit of Southeast Asia. There is, however, a lack of in-depth information on the alteration of its metabolic networks during ripening. Here, we annotated 94 ripening-associated metabolites from the pulp of durian cv. Monthong fruit at unripe and ripe stages, using capillary electrophoresis- and gas chromatography- time-of-flight mass spectrometry, specifically focusing on taste-related metabolites. During ripening, sucrose content increased. Change in raffinose-family oligosaccharides are reported herein for the first time. The malate and succinate contents increased, while those of citrate, an abundant organic acid, were unchanged. Notably, most amino acids increased, including isoleucine, leucine, and valine, whereas aspartate decreased, and glutamate was unchanged. Furthermore, transcriptomic analysis was performed to analyze the dynamic changes in sugar metabolism, glycolysis, TCA cycle, and amino acid pathways to identify key candidate genes. Taken together, our results elucidate the fundamental taste-related metabolism of durian, which can be exploited to develop durian metabolic and genetic markers in the future.
Collapse
Affiliation(s)
- Lalida Sangpong
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Gholamreza Khaksar
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Pinnapat Pinsorn
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Akira Oikawa
- Faculty of Agriculture, Yamagata University, Yamagata, Japan
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Ryosuke Sasaki
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Mutsumi Watanabe
- Plant Secondary Metabolism, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara, Japan
| | - Karan Wangpaiboon
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Takayuki Tohge
- Plant Secondary Metabolism, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara, Japan
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Kazuki Saito
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Supaart Sirikantaramas
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Molecular Sensory Science Center, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Supaart Sirikantaramas,
| |
Collapse
|