1
|
Feng XX, Wang JJ, Dong AQ. Expression of SPNS2 in colorectal cancer and its role in colorectal cell proliferation and migration. Shijie Huaren Xiaohua Zazhi 2024; 32:919-926. [DOI: 10.11569/wcjd.v32.i12.919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/26/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Sphingosine-1-phosphate transporter 2 (SPNS2) is involved in various tumor biological processes, but its expression status and function in colorectal cancer (CRC) have not been clarified yet.
AIM To investigate SPNS2 expression in CRC tissues and explore its role and mechanisms in proliferation, invasion, and migration of SW620 cells.
METHODS The expression profile data of CRC were retrieved from the Cancer Genome Atlas (TCGA) database. The expression difference of SPNS2 in CRC and normal tissues was analyzed using R, and verified using the Human Protein Atlas (HPA) database. The relationship between SPNS2 expression and the prognosis of patients was analyzed through the Kaplan-Meier Plotter website. After downregulating the expression of SPNS2 in SW620 cells by transfecting si-SPNS2, the proliferation, migration and invasion capabilities of the cells were assessed through the WST-8 assay, colony formation assay, scratch assay, and Transwell cell invasion assay. Concurrently, the expression levels of proteins related to cell proliferation, epithelial-mesenchymal transition (EMT), and the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB, AKT) signaling pathway were analyzed via Western blot.
RESULTS The TCGA expression profile data analysis showed that SPNS2 was significantly upregulated in CRC tissues, which was confirmed using the HPA database. Kaplan-Meier Plotter analysis showed that patients with high expression of SPNS2 had a poor prognosis. Compared to the control group, transfection with si-SPNS2 significantly inhibited SPNS2 expression in SW620 cells, leading to a notable reduction in their proliferation capability, colony formation rate, cell migration rate, and cell invasion rate. Additionally, Western blot analysis indicated that SPNS2 knockdown resulted in increased E-cadherin expression in SW620 cells, while simultaneously decreasing the expression levels of proliferating cell nuclear antigen, Ki-67 antigen, N-cadherin, Snail, matrix metallopeptidase 9, p-PI3K/PI3K, and p-AKT/AKT.
CONCLUSION SPNS2 is upregulated in CRC. Knockdown of SPNS2 can inhibit the proliferation, invasion, and migration of SW620 cells, and the mechanism may be related to the regulation of proliferation, EMT, and expression of PI3K/AKT signaling pathway-related proteins.
Collapse
Affiliation(s)
- Xing-Xing Feng
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China
| | - Jia-Jie Wang
- Department of Pharmacy, Taizhou Enze Hospital, Taizhou 318050, Zhejiang Province, China
| | - Ai-Qin Dong
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China
| |
Collapse
|
2
|
Cheng CS, Wu Y, Jin JB, Xu JY, Yang PW, Zhu WH, Zheng L, Chen JX. Cynanchum paniculatum (Bunge) Kitag. ex H.Hara inhibits pancreatic cancer progression by inducing caspase-dependent apoptosis and suppressing TGF-β-mediated epithelial-mesenchymal transition. Front Pharmacol 2024; 15:1284371. [PMID: 38881872 PMCID: PMC11176445 DOI: 10.3389/fphar.2024.1284371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/30/2024] [Indexed: 06/18/2024] Open
Abstract
Background: Cynanchum paniculatum (Bunge) Kitag. ex H.Hara, a member of the Asclepiadaceae family, has a rich history as a traditional Chinese medicinal plant used to treat digestive disorders. However, its potential anti-cancer effects in pancreatic cancer remain largely unexplored. Aim: This study delves into the intricate anti-pancreatic cancer mechanisms of C. paniculatum (Bunge) Kitag. ex H.Hara aqueous extract (CPAE) by elucidating its role in apoptosis induction and the inhibition of invasion and migration. Methods: A comprehensive set of methodologies was employed to assess CPAE's impact, including cell viability analyses using MTT and colony formation assays, flow cytometry for cell cycle distribution and apoptosis assessment, scratch-wound and Matrigel invasion assays for migration and invasion capabilities, and immunoblotting to measure the expression levels of key proteins involved in apoptosis and metastasis. Additionally, a murine xenograft model was established to investigate CPAE's in vivo anti-cancer potential. Results: CPAE exhibited time- and dose-dependent suppression of proliferation and colony formation in pancreatic cancer cells. Notably, CPAE induced apoptosis and G2/M phase arrest, effectively activating the caspase-dependent PARP pathway. At non-cytotoxic doses, CPAE significantly curtailed the metastatic abilities of pancreatic cells, effectively suppressing epithelial-mesenchymal transition (EMT) and downregulating the TGF-β1/Smad2/3 pathway. In vivo experiments underscored CPAE's ability to inhibit tumor proliferation. Conclusion: This study illuminates the multifaceted anti-proliferative, pro-apoptotic, anti-invasive, and anti-migratory effects of CPAE, both in vitro and in vivo. CPAE emerges as a promising herbal medicine for pancreatic cancer treatment, with its potential mediated through apoptosis induction via the caspase-dependent PARP pathway and MET suppression via the TGF-β1/Smad2/3 signaling pathway at non-cytotoxic doses. These findings advocate for further exploration of CPAE's therapeutic potential in pancreatic cancer.
Collapse
Affiliation(s)
- Chien-Shan Cheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan Wu
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Jia-Bin Jin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Yue Xu
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Pei-Wen Yang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Hua Zhu
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Lan Zheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Jing-Xian Chen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| |
Collapse
|
3
|
Ito K, Harada I, Martinez C, Sato K, Lee E, Port E, Byerly JH, Nayak A, Tripathi E, Zhu J, Irie HY. MARCH2, a Novel Oncogene-regulated SNAIL E3 Ligase, Suppresses Triple-negative Breast Cancer Metastases. CANCER RESEARCH COMMUNICATIONS 2024; 4:946-957. [PMID: 38457262 PMCID: PMC10977041 DOI: 10.1158/2767-9764.crc-23-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 01/02/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Epithelial-mesenchymal transition (EMT) in cancer promotes metastasis and chemotherapy resistance. A subset of triple-negative breast cancer (TNBC) exhibits a mesenchymal gene signature that is associated with poor patient outcomes. We previously identified PTK6 tyrosine kinase as an oncogenic driver of EMT in a subset of TNBC. PTK6 induces EMT by stabilizing SNAIL, a key EMT-initiating transcriptional factor. Inhibition of PTK6 activity reverses mesenchymal features of TNBC cells and suppresses their metastases by promoting SNAIL degradation via a novel mechanism. In the current study, we identify membrane-associated RING-CH2 (MARCH2) as a novel PTK6-regulated E3 ligase that promotes the ubiquitination and degradation of SNAIL protein. The MARCH2 RING domain is critical for SNAIL ubiquitination and subsequent degradation. PTK6 inhibition promotes the interaction of MARCH2 with SNAIL. Overexpression of MARCH2 exhibits tumor suppressive properties and phenocopies the effects of SNAIL downregulation and PTK6 inhibition in TNBC cells, such as inhibition of migration, anoikis resistance, and metastasis. Consistent with this, higher levels of MARCH2 expression in breast and other cancers are associated with better prognosis. We have identified MARCH2 as a novel SNAIL E3 ligase that regulates EMT and metastases of mesenchymal TNBC. SIGNIFICANCE EMT is a process directly linked to drug resistance and metastasis of cancer cells. We identified MARCH2 as a novel regulator of SNAIL, a key EMT driver, that promotes SNAIL ubiquitination and degradation in TNBC cells. MARCH2 is oncogene regulated and inhibits growth and metastasis of TNBC. These insights could contribute to novel strategies to therapeutically target TNBC.
Collapse
Affiliation(s)
- Koichi Ito
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ibuki Harada
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Criseyda Martinez
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Katsutoshi Sato
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Elisa Port
- Department of Surgery, Mount Sinai Hospital, New York, New York
| | - Jessica H. Byerly
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anupma Nayak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ekta Tripathi
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jun Zhu
- Sema4, Stamford, Connecticut
| | - Hanna Y. Irie
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
4
|
Sha Y, Liang W, Mo C, Hou X, Ou M. Multi‑dimensional analysis reveals NCKAP5L is a promising biomarker for the diagnosis and prognosis of human cancers, especially colorectal cancer. Oncol Lett 2024; 27:53. [PMID: 38192666 PMCID: PMC10773189 DOI: 10.3892/ol.2023.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/15/2023] [Indexed: 01/10/2024] Open
Abstract
The Nck-associated protein 5-like (NCKAP5L) gene, also known as Cep169, is associated with certain cancers. However, the diagnosis and prognosis value of NCKAP5L in several types of human cancer, including colorectal cancer, is not fully understood. In the present study, a comprehensive pan-cancer analysis of NCKAP5L was performed using several approaches, including gene expression and alteration, protein phosphorylation, immune infiltration, survival prognosis analyses and gene enrichment using the following: The University of California Santa Cruz Genome Browser Human Dec. 2013 (GRCh38/hg38) Assembly, Tumor Immune Estimation Resource (version 2), Human Protein Atlas, Gene Expression Profiling Interactive Analysis (version 2), University of Alabama at Birmingham Cancer Data Analysis portal, the Kaplan-Meier Plotter, cBioportal, Search Tool for the Retrieval of Interacting Genes/Proteins, Jvenn and the Metascape server. The role of NCKAP5L in colorectal cancer was further assessed by reverse transcription-quantitative PCR. The results demonstrated that NCKAP5L was upregulated in the majority of cancer types, including colorectal cancer. The high expression of NCKAP5L was significantly correlated with patient survival prognosis and immune infiltration of cancer-associated fibroblasts in numerous types of cancer, including colorectal cancer. Furthermore, Gene Ontology analysis identified that NCKAP5L may serve an important role in metabolic and cellular processes in human cancers. In summary, the data from the present study demonstrate that NCKAP5L is a potential tumor biomarker for the diagnosis and prognosis of human cancers, especially colorectal cancer.
Collapse
Affiliation(s)
- Yu Sha
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Wenken Liang
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Chune Mo
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Xianliang Hou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Minglin Ou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| |
Collapse
|
5
|
Xu X, Hou Y, Long N, Jiang L, Yan Z, Xu Y, Lv Y, Xiang X, Yang H, Liu J, Qi X, Chu L. TPPP3 promote epithelial-mesenchymal transition via Snail1 in glioblastoma. Sci Rep 2023; 13:17960. [PMID: 37863960 PMCID: PMC10589222 DOI: 10.1038/s41598-023-45233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023] Open
Abstract
Tubulin polymerization promoting protein 3 (TPPP3), a member of the tubulin polymerization family, participates in cell progressions in several human cancers, its biological function and the underlying mechanisms in glioblastoma multiforme (GBM) remain unclear. Here, we investigated the role and application value of TPPP3 in gliomas and found that the expression of TPPP3 in glioma was higher than that in normal brain tissue (NBT), and increased with the grade of glioma. Up-regulation of TPPP3 expression in glioblastoma cells confer stronger ability of migration, invasion, proliferation and lower apoptosis in vitro. Inhibition of TPPP3 expression in GBM could reduce the migration, invasion, proliferation and induce the apoptosis of glioblastoma cells. TPPP3 affected the process of EMT by regulating the expression of Snail 1 protein. In clinical data analysis, we found a positive correlation between TPPP3 and Snail1 protein expression levels in glioblastomas. Low TPPP3 expression leads to better survival expectations in glioblastomas patients. The content of this study paves the way for further in-depth exploration of the role of TPPP3 in glioblastoma in the future, and provides new treatment and research directions.
Collapse
Affiliation(s)
- Xu Xu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yunan Hou
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Niya Long
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Lishi Jiang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhangwei Yan
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuan Xu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Ying Lv
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xin Xiang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Hua Yang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jian Liu
- Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Liangzhao Chu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
6
|
Mottais A, Riberi L, Falco A, Soccal S, Gohy S, De Rose V. Epithelial-Mesenchymal Transition Mechanisms in Chronic Airway Diseases: A Common Process to Target? Int J Mol Sci 2023; 24:12412. [PMID: 37569787 PMCID: PMC10418908 DOI: 10.3390/ijms241512412] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a reversible process, in which epithelial cells lose their epithelial traits and acquire a mesenchymal phenotype. This transformation has been described in different lung diseases, such as lung cancer, interstitial lung diseases, asthma, chronic obstructive pulmonary disease and other muco-obstructive lung diseases, such as cystic fibrosis and non-cystic fibrosis bronchiectasis. The exaggerated chronic inflammation typical of these pulmonary diseases can induce molecular reprogramming with subsequent self-sustaining aberrant and excessive profibrotic tissue repair. Over time this process leads to structural changes with progressive organ dysfunction and lung function impairment. Although having common signalling pathways, specific triggers and regulation mechanisms might be present in each disease. This review aims to describe the various mechanisms associated with fibrotic changes and airway remodelling involved in chronic airway diseases. Having better knowledge of the mechanisms underlying the EMT process may help us to identify specific targets and thus lead to the development of novel therapeutic strategies to prevent or limit the onset of irreversible structural changes.
Collapse
Affiliation(s)
- Angélique Mottais
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (A.M.); (S.G.)
| | - Luca Riberi
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy; (L.R.); (A.F.); (S.S.)
| | - Andrea Falco
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy; (L.R.); (A.F.); (S.S.)
| | - Simone Soccal
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy; (L.R.); (A.F.); (S.S.)
| | - Sophie Gohy
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (A.M.); (S.G.)
- Department of Pneumology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
- Cystic Fibrosis Reference Centre, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Virginia De Rose
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| |
Collapse
|
7
|
Xu T, Liu X. Oleuropein inhibits invasion of squamous cell carcinoma of the head and neck through TGF-β1 signaling pathway. BMC Cancer 2022; 22:942. [PMID: 36050634 PMCID: PMC9434901 DOI: 10.1186/s12885-022-09979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background Squamous cell carcinoma of the head and neck (SCCHN) is globally the sixth most common cancer. TGF-β1 is a key regulator of cell proliferation and differentiation, and it induces the epithelial-mesenchymal transition (EMT) by activating Smad2 signaling in SCCHN cells. Previous studies have revealed that oleuropein (OL) can inhibit the EMT alterations and migration of cancer cells. The aim of this study was to examine the involvement of TGF-β1 signaling pathway in SCCHN and the effect of OL on it. Methods Through in vitro experiments at cellular level and in vivo evaluation in mouse xenograft tumor model, with morphological and Western blotting assays, we examined the effects of OL on TGF-β1-mediated signaling pathway in Tu686, CAL-27 and 686LN-M2 tumor cell lines. Results We found that OL reversed the TGF-β1-induced EMT, and changed the morphology of cells and the expression levels of epithelial and interstitial markers. Wound-healing and transwell invasion assays indicated that OL reversed the TGF-β1-promoted cell migration and invasion dramatically. The effects of OL were also verified in xenograft tumor model of mice, and the findings were identical to the in vitro assays. Conclusion This study demonstrated that OL inhibits the growth and metastasis of SCCHN by interfering with the TGF-β1 signaling pathway, and the findings are beneficial for the development of prevention and treatment strategy of SCCHN. Due to the low toxicity and less side effects, OL may be of potential value in the inhibition of metastasis of SCCHN and improve survival. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09979-2.
Collapse
Affiliation(s)
- Ting Xu
- Department of Otolaryngology, Wuxi Second Clinical Medical College of Nantong University, No. 68, Zhongshan Road, Liangxi District, Wuxi, Jiangsu, 214002, People's Republic of China.
| | - Xuan Liu
- Department of Otolaryngology, Wuxi Second Clinical Medical College of Nantong University, No. 68, Zhongshan Road, Liangxi District, Wuxi, Jiangsu, 214002, People's Republic of China
| |
Collapse
|
8
|
Hua Y, Dong J, Hong J, Wang B, Yan Y, Li Z. Clinical applications of circulating tumor cells in hepatocellular carcinoma. Front Oncol 2022; 12:968591. [PMID: 36091119 PMCID: PMC9448983 DOI: 10.3389/fonc.2022.968591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 12/09/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor and ranked as the fourth cause of cancer-related mortality. The poor clinical prognosis is due to an advanced stage and resistance to systemic treatment. There are no obvious clinical symptoms in the early stage and the early diagnosis rate remains low. Novel effective biomarkers are important for early diagnosis and tumor surveillance to improve the survival of HCC patients. Circulating tumor cells (CTCs) are cancer cells shed from primary or metastatic tumor and extravasate into the blood system. The number of CTCs is closely related to the metastasis of various solid tumors. CTCs escape from blood vessels and settle in target organs, then form micro-metastasis. Epithelial-mesenchymal transformation (EMT) plays a crucial role in distant metastasis, which confers strong invasiveness to CTCs. The fact that CTCs can provide complete cellular biological information, which allows CTCs to be one of the most promising liquid biopsy targets. Recent studies have shown that CTCs are good candidates for early diagnosis, prognosis evaluation of metastasis or recurrence, and even a potential therapeutic target in patients with HCC. It is a new indicator for clinical application in the future. In this review, we introduce the enrichment methods and mechanisms of CTCs, and focus on clinical application in patients with HCC.
Collapse
Affiliation(s)
- Yinggang Hua
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Jingqing Dong
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Jinsong Hong
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Bailin Wang
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Yong Yan
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Zhiming Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
SLC6A14 Depletion Contributes to Amino Acid Starvation to Suppress EMT-Induced Metastasis in Gastric Cancer by Perturbing the PI3K/AKT/mTORC1 Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7850658. [PMID: 35865664 PMCID: PMC9296317 DOI: 10.1155/2022/7850658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022]
Abstract
Metastasis is the main obstacle for the treatment of gastric cancer (GC), leading to low survival rate and adverse outcomes in CG patients. SLC6A14, a general amino acid transporter, can import all the essential amino acids in a manner dependent on the NaCl-generated osmotic gradients. Herein, we constructed GC cell sublines with high (SGC7901-M and MKN28-M) and low (MKN28-NM and SGC7901-NM) metastatic ability. Putative functional genes advancing GC metastasis were identified using mRNA microarray analysis and High-Content Screening. In particular, most significant change with a dampening trend in the migration potentiality of GC cells emerged after SLC6A14 gene was silenced. SLC6A14 expression was positively correlated with the migrated capability of different GC cell lines, and SLC6A14 was also constitutively expressed in GC patients with venous or lymphatic invasion, lymph node, or distant metastasis and poor prognosis, thus prompting SLC6A14 as a nonnegligible presence in supporting GC migration and invasion. Consistently, SLC6A14 depletion drastically depressed GC metastasis in vitro and in vivo. Most importantly, pharmacological blockade and gene silence of SLC6A14 both restricted epithelial-mesenchymal transition- (EMT-) driven GC metastasis, in which attenuated activation of the PI3K/AKT/mTORC1 pathway caused by amino acid starvation was involved. In summary, it is conceivable that targeting SLC6A14 has a tremendous promising for the treatment of metastatic GC.
Collapse
|
10
|
Kirtonia A, Pandey AK, Ramachandran B, Mishra DP, Dawson DW, Sethi G, Ganesan TS, Koeffler HP, Garg M. Overexpression of laminin-5 gamma-2 promotes tumorigenesis of pancreatic ductal adenocarcinoma through EGFR/ERK1/2/AKT/mTOR cascade. Cell Mol Life Sci 2022; 79:362. [PMID: 35699794 PMCID: PMC11073089 DOI: 10.1007/s00018-022-04392-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is correlated with poor outcomes because of limited therapeutic options. Laminin-5 gamma-2 (LAMC2) plays a critical role in key biological processes. However, the detailed molecular mechanism and potential roles of LAMC2 in PDAC stay unexplored. The present study examines the essential role and molecular mechanisms of LAMC2 in the tumorigenesis of PDAC. Here, we identified that LAMC2 is significantly upregulated in microarray cohorts and TCGA RNA sequencing data of PDAC patients compared to non-cancerous/normal tissues. Patients with higher transcript levels of LAMC2 were correlated with clinical stages; dismal overall, as well as, disease-free survival. Additionally, we confirmed significant upregulation of LAMC2 in a panel of PDAC cell lines and PDAC tumor specimens in contrast to normal pancreatic tissues and cells. Inhibition of LAMC2 significantly decreased cell growth, clonogenic ability, migration and invasion of PDAC cells, and tumor growth in the PDAC xenograft model. Mechanistically, silencing of LAMC2 suppressed expression of ZEB1, SNAIL, N-cadherin (CDH2), vimentin (VIM), and induced E-cadherin (CDH1) expression leading to a reversal of mesenchymal to an epithelial phenotype. Interestingly, co-immunoprecipitation experiments demonstrated LAMC2 interaction with epidermal growth factor receptor (EGFR). Further, stable knockdown of LAMC2 inhibited phosphorylation of EGFR, ERK1/2, AKT, mTOR, and P70S6 kinase signaling cascade in PDAC cells. Altogether, our findings suggest that silencing of LAMC2 inhibited PDAC tumorigenesis and metastasis through repression of epithelial-mesenchymal transition and modulation of EGFR/ERK1/2/AKT/mTOR axis and could be a potential diagnostic, prognostic, and therapeutic target for PDAC.
Collapse
Affiliation(s)
- Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Haryana, 122413, India
| | - Balaji Ramachandran
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
| | - Durga Prasad Mishra
- Cell Death Research Laboratory, Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - David W Dawson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Trivadi S Ganesan
- Laboratory for Cancer Biology, Department of Medical Oncology, Sri Ramachandra Institute of Higher Education and Research, Chennai, 610016, India
| | - H Phillip Koeffler
- Cancer Science Institute (CSI) of Singapore, National University of Singapore, Singapore, 117600, Singapore
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, School of Medicine, University of California, Los Angeles, CA, 90059, USA
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, 201313, India.
| |
Collapse
|
11
|
Greaves D, Calle Y. Epithelial Mesenchymal Transition (EMT) and Associated Invasive Adhesions in Solid and Haematological Tumours. Cells 2022; 11:649. [PMID: 35203300 PMCID: PMC8869945 DOI: 10.3390/cells11040649] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
In solid tumours, cancer cells that undergo epithelial mesenchymal transition (EMT) express characteristic gene expression signatures that promote invasive migration as well as the development of stemness, immunosuppression and drug/radiotherapy resistance, contributing to the formation of currently untreatable metastatic tumours. The cancer traits associated with EMT can be controlled by the signalling nodes at characteristic adhesion sites (focal contacts, invadopodia and microtentacles) where the regulation of cell migration, cell cycle progression and pro-survival signalling converge. In haematological tumours, ample evidence accumulated during the last decade indicates that the development of an EMT-like phenotype is indicative of poor disease prognosis. However, this EMT phenotype has not been directly linked to the assembly of specific forms of adhesions. In the current review we discuss the role of EMT in haematological malignancies and examine its possible link with the progression towards more invasive and aggressive forms of these tumours. We also review the known types of adhesions formed by haematological malignancies and speculate on their possible connection with the EMT phenotype. We postulate that understanding the architecture and regulation of EMT-related adhesions will lead to the discovery of new therapeutic interventions to overcome disease progression and resistance to therapies.
Collapse
Affiliation(s)
| | - Yolanda Calle
- School of Life Sciences and Health, University of Roehampton, London SW15 4JD, UK;
| |
Collapse
|
12
|
Zhang Z, Niu J, Li Q, Huang Y, Jiang B, Wu Y, Huang Y, Jian J. HMG20A from Nile tilapia (Oreochromis niloticus) involved in the immune response to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2021; 119:499-507. [PMID: 34687883 DOI: 10.1016/j.fsi.2021.10.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
High-mobility group 20 A (HMG20A) has important biological functions, such as inhibiting the differentiation of red blood cells and nerve cells, promoting the proliferation and metastasis of cancer cells, and regulating inflammatory reaction. However, the role of HMG20A in the response to bacterial infection in the economic fish Nile tilapia (Oreochromis niloticus) remains unclear. In this study, a HMG20A homolog was successfully identified and characterized from Nile tilapia (On-HMG20A), and its expression model and biological effects on bacterial infection were analyzed. The open reading frame (ORF) of On-HMG20A was 876 bp in length, which encoded 291 amino acids and possessed a HMG domain (High mobility group domains) and coiled coil region. Results of the expression model showed that On-HMG20A was widely distributed in immune-related tissues of healthy tilapia and upregulated in a time-dependent manner after being challenged by Streptococcus agalactiae. Meanwhile, knocking down the expression of On-HMG20A can reduce the inflammatory response of tilapia and the degree of tissue damage caused by S. agalactiae. Moreover, knocking down the expression of On-HMG20A can reduce the bacterial load of tilapia tissues after being challenged by S. agalactiae and improve the survival rate. Collectively, these results showed that On-HMG20A may be related to the immune response of Nile tilapia against bacterial infection.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Jinzhong Niu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Qi Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yongxiong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Baijian Jiang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yiqin Wu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| |
Collapse
|
13
|
高 莉, 张 雄, 窦 思, 岳 小, 杨 捷. [Interference of long noncoding RNA FOXCUT inhibits epithelial-mesenchymal transformation and induces mitochondrial injury in nasopharyngeal carcinoma cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1334-1341. [PMID: 34658347 PMCID: PMC8526325 DOI: 10.12122/j.issn.1673-4254.2021.09.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Indexed: 12/09/2022]
Abstract
OBJECTIVE To investigate the effects of RNA interference of long noncoding RNA FOXCUT on epithelial mesenchymal transformation and mitochondrial function in nasopharyngeal carcinoma (NPC) cells. METHODS FOXCUT expression levels were detected by RT-PCR in tumor tissues and adjacent tissues from 50 patients with NPC and in NP69, CNE1, CNE2, SUNE2, HER2 and 5-8F cell lines. CNE1 cells were transfected with a short hairpin RNA (shRNA) targeting FOXCUT or a negative control RNA construct (shRNA-NC), and the changes in cell proliferation and morphology were assessed with CCK8 assay, clone formation assay and microscopic observation. An immunofluorescence assay was used to examine the vimentin-positive cells, and the levels of SOD, MDA and LDH in the cells were detected. The changes of mitochondrial membrane potential were detected with flow cytometry, and the expression levels of E-cad, N-cad, vimentin, Bax, Bcl-2, caspase-3 and c-Myc in the cells were detected with Western blotting. RESULTS The expression level of FOXCUT was significantly increased in NPC tissues as compared with the adjacent tissues (P < 0.001). Compared with NP69 cells, CNE1, CNE2, SUNE2, HER2 and 5-8F cells all exhibited significantly increased expressions of FOXCUT (P < 0.001). In CNE1 cells, transfection with FOXCUT shRNA significantly inhibited cell proliferation and clone formation (P < 0.001), and caused obvious changes in cell morphology. FOXCUT knockdown significantly decreased the expressions of N-cad and vimentin, increased E- cad expression and the contents of MDA and LDH (P < 0.05), reduced vimentin- positive cells and the activity of SOD, and caused a shift of red fluorescent cells to green fluorescent cells and an increased percentage of green fluorescent cells. FOXCUT knockdown also resulted in significantly increased expressions of Bax/Bcl2 and cleaved Cas3/Cas3 and a lowered expression of c-Myc. CONCLUSIONS Interference of FOXCUT can inhibit the proliferation and epithelial-mesenchymal transformation, enhance oxidative stress, induce mitochondrial function injury, and promote apoptosis in NPC cells, suggesting the potential of FOXCUT interference for targeted treatment of NPC.
Collapse
Affiliation(s)
- 莉莉 高
- 西京学院医学院,陕西 西安 710000School of Medicine, Xijing University, Xi'an 710000, China
| | - 雄 张
- 陕西中医药大学附属医院耳鼻喉科,陕西 咸阳 712000Department of Otolaryngology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - 思雨 窦
- 西京学院医学院,陕西 西安 710000School of Medicine, Xijing University, Xi'an 710000, China
| | - 小丁 岳
- 西京学院医学院,陕西 西安 710000School of Medicine, Xijing University, Xi'an 710000, China
| | - 捷玲 杨
- 西京学院医学院,陕西 西安 710000School of Medicine, Xijing University, Xi'an 710000, China
| |
Collapse
|