1
|
Lecuyer G, Rolland AD, Neyroud AS, Evrard B, Alary N, Genthon C, Dejucq-Rainsford N, Ravel C, Moreau J, Moinard N, Abdelhamid MHM, Klopp C, Bujan L, Chalmel F. Recurrent spontaneous miscarriages from sperm after ABVD chemotherapy in a patient with Hodgkin's lymphoma: sperm DNA and methylation profiling. Asian J Androl 2025:00129336-990000000-00303. [PMID: 40232270 DOI: 10.4103/aja2024107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/20/2024] [Indexed: 04/16/2025] Open
Abstract
ABSTRACT Lymphomas represent one of the most common malignant diseases in young men and an important issue is how treatments will affect their reproductive health. It has been hypothesized that chemotherapies, similarly to environmental chemicals, may alter the spermatogenic epigenome. Here, we report the genomic and epigenomic profiling of the sperm DNA from a 31-year-old Hodgkin lymphoma patient who faced recurrent spontaneous miscarriages in his couple 11-26 months after receiving chemotherapy with adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD). In order to capture the potential deleterious impact of the ABVD treatment on mutational and methylation changes, we compared sperm DNA before and 26 months after chemotherapy with whole-genome sequencing (WGS) and reduced representation bisulfite sequencing (RRBS). The WGS analysis identified 403 variants following ABVD treatment, including 28 linked to genes crucial for embryogenesis. However, none were found in coding regions, indicating no impact of chemotherapy on protein function. The RRBS analysis identified 99 high-quality differentially methylated regions (hqDMRs) for which methylation status changed upon chemotherapy. Those hqDRMs were associated with 87 differentially methylated genes, among which 14 are known to be important or expressed during embryo development. While no variants were detected in coding regions, promoter regions of several genes potentially important for embryo development contained variants or displayed an altered methylated status. These might in turn modify the corresponding gene expression and thus affect their function during key stages of embryogenesis, leading to potential developmental disorders or miscarriages.
Collapse
Affiliation(s)
- Gwendoline Lecuyer
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35000, France
| | - Antoine D Rolland
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35000, France
| | - Anne-Sophie Neyroud
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35000, France
- CHU de Rennes, Departement de Gynécologie Obstetrique Reproduction-CECOS, 16 Boulevard de Bulgarie, Rennes F-35000, France
| | - Bertrand Evrard
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35000, France
| | - Nathan Alary
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35000, France
| | - Clemence Genthon
- Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Unité Service 1426 (US1426), Transcriptome Plateforme Technologique (GeT-PlaGe), Genotoul, Castanet-Tolosan 31326, France
| | - Nathalie Dejucq-Rainsford
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35000, France
| | - Célia Ravel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35000, France
- CHU de Rennes, Departement de Gynécologie Obstetrique Reproduction-CECOS, 16 Boulevard de Bulgarie, Rennes F-35000, France
| | - Jessika Moreau
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse F-31027, France
| | - Nathalie Moinard
- Service de Biologie de la Reproduction et CECOS, Hôpital Paule de Viguier, CHU Toulouse, 330 Avenue de Grande Bretagne, Toulouse 31059, France
| | - Mohamed Hadi Mohamed Abdelhamid
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse F-31027, France
- Department of Cell Biology and Tissue Culture, Biotechnology Research Center (BTRC), Ayn Zarah, Tripoli, Libya
| | - Christophe Klopp
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse F-31027, France
| | - Louis Bujan
- Service de Biologie de la Reproduction et CECOS, Hôpital Paule de Viguier, CHU Toulouse, 330 Avenue de Grande Bretagne, Toulouse 31059, France
- DEFE, Inserm1203 Toulouse III and Montpellier Universities, 330 Avenue de Grande Bretagne, Toulouse 31059, France
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35000, France
| |
Collapse
|
2
|
Crisafulli G. Mutational Signatures in Colorectal Cancer: Translational Insights, Clinical Applications, and Limitations. Cancers (Basel) 2024; 16:2956. [PMID: 39272814 PMCID: PMC11393898 DOI: 10.3390/cancers16172956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
A multitude of exogenous and endogenous processes have the potential to result in DNA damage. While the repair mechanisms are typically capable of correcting this damage, errors in the repair process can result in mutations. The findings of research conducted in 2012 indicate that mutations do not occur randomly but rather follow specific patterns that can be attributed to known or inferred mutational processes. The process of mutational signature analysis allows for the inference of the predominant mutational process for a given cancer sample, with significant potential for clinical applications. A deeper comprehension of these mutational signatures in CRC could facilitate enhanced prevention strategies, facilitate the comprehension of genotoxic drug activity, predict responses to personalized treatments, and, in the future, inform the development of targeted therapies in the context of precision oncology. The efforts of numerous researchers have led to the identification of several mutational signatures, which can be categorized into different mutational signature references. In CRC, distinct mutational signatures are identified as correlating with mismatch repair deficiency, polymerase mutations, and chemotherapy treatment. In this context, a mutational signature analysis offers considerable potential for enhancing minimal residual disease (MRD) tests in stage II (high-risk) and stage III CRC post-surgery, stratifying CRC based on the impacts of genetic and epigenetic alterations for precision oncology, identifying potential therapeutic vulnerabilities, and evaluating drug efficacy and guiding therapy, as illustrated in a proof-of-concept clinical trial.
Collapse
|
3
|
Irshaid L, Costigan DC, Dong F, Matulonis UA, Nucci MR, Kolin DL. Molecular Landscape of Mullerian Clear Cell Carcinomas Identifies The Cancer Genome Atlas-like Prognostic Subgroups. Mod Pathol 2023; 36:100123. [PMID: 36857998 DOI: 10.1016/j.modpat.2023.100123] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/06/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
Mullerian clear cell carcinoma (CCC) is often aggressive and chemoresistant. The prognostic significance of molecular subclassification of endometrioid carcinomas is well established. However, less is known about the molecular landscape of CCC. The aim of this study was to better characterize the genetic landscape of a large cohort of CCC and correlate these findings with clinicopathologic features. CCC of the ovary (n = 72), endometrium (n = 24), and peritoneum/abdominal wall (n = 5) were retrospectively identified. Tumors had undergone tumor-only targeted sequencing using a hybrid capture next-generation sequencing panel. Median tumor mutational burden was 6.8 mutations/megabase (range, 1.3-185, 21% were ≥10 mutations/Mb). The most frequently mutated genes were ARID1A (48%), PIK3CA (45%), TP53 (23%), and PTEN (10%). ERBB2 amplification occurred in 4%. When classified according to the Cancer Genome Atlas/the Proactive Molecular Risk Classifier for Endometrial Cancer endometrial carcinoma molecular subgroups, 3 (3%) were POLE ultramutated, 5 (5%) were microsatellite instability-high (MSI-H), 20 (20%) were TP53-mutant subgroup, and 73 (72%) were no specific molecular profile (NSMP). Immunohistochemical expression of estrogen receptor, progesterone receptor, and programmed death-ligand 1 were not associated with the molecular subgroup. POLE and MSI-H tumors were characterized by an excellent prognosis, and the TP53-mutant subgroup had a worse disease-free survival than NSMP. NSMP tumors could be further substratified as high-risk NSMP if they lacked PIK3CA, PIK3R1, and ARID1A mutations, and/or harbored a TERT-promoter mutation. The Cancer Genome Atlas and NSMP-specific stratifications were prognostic for both the entire cohort and the subset of stage I ovarian tumors. On multivariable analysis, stage, lymphovascular invasion, and tumor mutational burden were prognostic for disease-free survival, whereas advanced stage and TP53-mutant subgroup - but not a TP53 mutation in isolation - were negative prognostic factors for overall survival. These data suggest that routine molecular profiling of Mullerian CCC may be warranted for both prognosis and identification of potential targeted treatments, such as immunotherapy and anti-HER2 agents.
Collapse
Affiliation(s)
- Lina Irshaid
- Division of Women's and Perinatal Pathology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Danielle C Costigan
- Division of Women's and Perinatal Pathology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Caroline
| | - Fei Dong
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ursula A Matulonis
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marisa R Nucci
- Division of Women's and Perinatal Pathology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - David L Kolin
- Division of Women's and Perinatal Pathology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
4
|
Das S, Thakur S, Korenjak M, Sidorenko VS, Chung FFL, Zavadil J. Aristolochic acid-associated cancers: a public health risk in need of global action. Nat Rev Cancer 2022; 22:576-591. [PMID: 35854147 DOI: 10.1038/s41568-022-00494-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 11/09/2022]
Abstract
Aristolochic acids (AAs) are a group of naturally occurring compounds present in many plant species of the Aristolochiaceae family. Exposure to AA is a significant risk factor for severe nephropathy, and urological and hepatobiliary cancers (among others) that are often recurrent and characterized by the prominent mutational fingerprint of AA. However, herbal medicinal products that contain AA continue to be manufactured and marketed worldwide with inadequate regulation, and possible environmental exposure routes receive little attention. As the trade of food and dietary supplements becomes increasingly globalized, we propose that further inaction on curtailing AA exposure will have far-reaching negative effects on the disease trends of AA-associated cancers. Our Review aims to systematically present the historical and current evidence for the mutagenicity and carcinogenicity of AA, and the effect of removing sources of AA exposure on cancer incidence trends. We discuss the persisting challenges of assessing the scale of AA-related carcinogenicity, and the obstacles that must be overcome in curbing AA exposure and preventing associated cancers. Overall, this Review aims to strengthen the case for the implementation of prevention measures against AA's multifaceted, detrimental and potentially fully preventable effects on human cancer development.
Collapse
Affiliation(s)
- Samrat Das
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France
| | - Shefali Thakur
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Michael Korenjak
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France
| | - Viktoriya S Sidorenko
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Felicia Fei-Lei Chung
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France.
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia.
| | - Jiri Zavadil
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France.
| |
Collapse
|
5
|
Crisafulli G, Sartore-Bianchi A, Lazzari L, Pietrantonio F, Amatu A, Macagno M, Barault L, Cassingena A, Bartolini A, Luraghi P, Mauri G, Battuello P, Personeni N, Zampino MG, Pessei V, Vitiello PP, Tosi F, Idotta L, Morano F, Valtorta E, Bonoldi E, Germano G, Di Nicolantonio F, Marsoni S, Siena S, Bardelli A. Temozolomide Treatment Alters Mismatch Repair and Boosts Mutational Burden in Tumor and Blood of Colorectal Cancer Patients. Cancer Discov 2022; 12:1656-1675. [PMID: 35522273 PMCID: PMC9394384 DOI: 10.1158/2159-8290.cd-21-1434] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/16/2022] [Accepted: 05/04/2022] [Indexed: 01/07/2023]
Abstract
The majority of metastatic colorectal cancers (mCRC) are mismatch repair (MMR) proficient and unresponsive to immunotherapy, whereas MMR-deficient (MMRd) tumors often respond to immune-checkpoint blockade. We previously reported that the treatment of colorectal cancer preclinical models with temozolomide (TMZ) leads to MMR deficiency, increased tumor mutational burden (TMB), and sensitization to immunotherapy. To clinically translate these findings, we designed the ARETHUSA clinical trial whereby O6-methylguanine-DNA-methyltransferase (MGMT)-deficient, MMR-proficient, RAS-mutant mCRC patients received priming therapy with TMZ. Analysis of tissue biopsies and circulating tumor DNA (ctDNA) revealed the emergence of a distinct mutational signature and increased TMB after TMZ treatment. Multiple alterations in the nucleotide context favored by the TMZ signature emerged in MMR genes, and the p.T1219I MSH6 variant was detected in ctDNA and tissue of 94% (16/17) of the cases. A subset of patients whose tumors displayed the MSH6 mutation, the TMZ mutational signature, and increased TMB achieved disease stabilization upon pembrolizumab treatment. SIGNIFICANCE MMR-proficient mCRCs are unresponsive to immunotherapy. We provide the proof of concept that inactivation of MMR genes can be achieved pharmacologically with TMZ and molecularly monitored in the tissue and blood of patients with mCRC. This strategy deserves additional evaluation in mCRC patients whose tumors are no longer responsive to standard-of-care treatments. See related commentary by Willis and Overman, p. 1612. This article is highlighted in the In This Issue feature, p. 1599.
Collapse
Affiliation(s)
- Giovanni Crisafulli
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Luca Lazzari
- The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessio Amatu
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Marco Macagno
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Ludovic Barault
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Andrea Cassingena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Paolo Luraghi
- The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Gianluca Mauri
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy.,The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Paolo Battuello
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Nicola Personeni
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Maria Giulia Zampino
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IRCCS, Milan, Italy
| | | | - Pietro Paolo Vitiello
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Federica Tosi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Laura Idotta
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Federica Morano
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Emanuele Valtorta
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Emanuela Bonoldi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giovanni Germano
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | | | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.,Corresponding Author: Alberto Bardelli, University of Turin, Department of Oncology, Candiolo Cancer Institute, FPO - IRCCS, Str.Prov.le 142, km 3.95, 10060, Candiolo, Torino, Italy. Phone/Fax: 39-011-993-3235; E-mail:
| |
Collapse
|
6
|
Petljak M, Dananberg A, Chu K, Bergstrom EN, Striepen J, von Morgen P, Chen Y, Shah H, Sale JE, Alexandrov LB, Stratton MR, Maciejowski J. Mechanisms of APOBEC3 mutagenesis in human cancer cells. Nature 2022; 607:799-807. [PMID: 35859169 PMCID: PMC9329121 DOI: 10.1038/s41586-022-04972-y] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/13/2022] [Indexed: 02/07/2023]
Abstract
The APOBEC3 family of cytosine deaminases has been implicated in some of the most prevalent mutational signatures in cancer1-3. However, a causal link between endogenous APOBEC3 enzymes and mutational signatures in human cancer genomes has not been established, leaving the mechanisms of APOBEC3 mutagenesis poorly understood. Here, to investigate the mechanisms of APOBEC3 mutagenesis, we deleted implicated genes from human cancer cell lines that naturally generate APOBEC3-associated mutational signatures over time4. Analysis of non-clustered and clustered signatures across whole-genome sequences from 251 breast, bladder and lymphoma cancer cell line clones revealed that APOBEC3A deletion diminished APOBEC3-associated mutational signatures. Deletion of both APOBEC3A and APOBEC3B further decreased APOBEC3 mutation burdens, without eliminating them. Deletion of APOBEC3B increased APOBEC3A protein levels, activity and APOBEC3A-mediated mutagenesis in some cell lines. The uracil glycosylase UNG was required for APOBEC3-mediated transversions, whereas the loss of the translesion polymerase REV1 decreased overall mutation burdens. Together, these data represent direct evidence that endogenous APOBEC3 deaminases generate prevalent mutational signatures in human cancer cells. Our results identify APOBEC3A as the main driver of these mutations, indicate that APOBEC3B can restrain APOBEC3A-dependent mutagenesis while contributing its own smaller mutation burdens and dissect mechanisms that translate APOBEC3 activities into distinct mutational signatures.
Collapse
Affiliation(s)
- Mia Petljak
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Alexandra Dananberg
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevan Chu
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Erik N Bergstrom
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA.,Department of Bioengineering, UC San Diego, La Jolla, CA, USA.,Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Josefine Striepen
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Patrick von Morgen
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yanyang Chen
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hina Shah
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julian E Sale
- Division of Protein & Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, UK
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA.,Department of Bioengineering, UC San Diego, La Jolla, CA, USA.,Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, UK.
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
7
|
Abbasi A, Alexandrov LB. Significance and limitations of the use of next-generation sequencing technologies for detecting mutational signatures. DNA Repair (Amst) 2021; 107:103200. [PMID: 34411908 PMCID: PMC9478565 DOI: 10.1016/j.dnarep.2021.103200] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Next generation sequencing technologies (NGS) have been critical in characterizing the genomic landscape and untangling the genetic heterogeneity of human cancer. Since its advent, NGS has played a pivotal role in identifying the patterns of somatic mutations imprinted on cancer genomes and in deciphering the signatures of the mutational processes that have generated these patterns. Mutational signatures serve as phenotypic molecular footprints of exposures to environmental factors as well as deficiency and infidelity of DNA replication and repair pathways. Since the first roadmap of mutational signatures in human cancer was generated from whole-genome and whole-exome sequencing data, there has been a growing interest to extract mutational signatures from other NGS technologies such as targeted panel sequencing, RNA sequencing, single-cell sequencing, duplex sequencing, reduced representation sequencing, and long-read sequencing. Many of these technologies have their inherent sequencing biases and produce technical artifacts that can confound the extraction of reliable and interpretable mutational signatures. In this review, we highlight the relevance, limitations, and prospects of using different NGS technologies for examining mutational patterns and for deciphering mutational signatures.
Collapse
Affiliation(s)
- Ammal Abbasi
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA; Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA; Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
8
|
Rogozin IB, Roche-Lima A, Tyryshkin K, Carrasquillo-Carrión K, Lada AG, Poliakov LY, Schwartz E, Saura A, Yurchenko V, Cooper DN, Panchenko AR, Pavlov YI. DNA Methylation, Deamination, and Translesion Synthesis Combine to Generate Footprint Mutations in Cancer Driver Genes in B-Cell Derived Lymphomas and Other Cancers. Front Genet 2021; 12:671866. [PMID: 34093666 PMCID: PMC8170131 DOI: 10.3389/fgene.2021.671866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer genomes harbor numerous genomic alterations and many cancers accumulate thousands of nucleotide sequence variations. A prominent fraction of these mutations arises as a consequence of the off-target activity of DNA/RNA editing cytosine deaminases followed by the replication/repair of edited sites by DNA polymerases (pol), as deduced from the analysis of the DNA sequence context of mutations in different tumor tissues. We have used the weight matrix (sequence profile) approach to analyze mutagenesis due to Activation Induced Deaminase (AID) and two error-prone DNA polymerases. Control experiments using shuffled weight matrices and somatic mutations in immunoglobulin genes confirmed the power of this method. Analysis of somatic mutations in various cancers suggested that AID and DNA polymerases η and θ contribute to mutagenesis in contexts that almost universally correlate with the context of mutations in A:T and G:C sites during the affinity maturation of immunoglobulin genes. Previously, we demonstrated that AID contributes to mutagenesis in (de)methylated genomic DNA in various cancers. Our current analysis of methylation data from malignant lymphomas suggests that driver genes are subject to different (de)methylation processes than non-driver genes and, in addition to AID, the activity of pols η and θ contributes to the establishment of methylation-dependent mutation profiles. This may reflect the functional importance of interplay between mutagenesis in cancer and (de)methylation processes in different groups of genes. The resulting changes in CpG methylation levels and chromatin modifications are likely to cause changes in the expression levels of driver genes that may affect cancer initiation and/or progression.
Collapse
Affiliation(s)
- Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Abiel Roche-Lima
- Center for Collaborative Research in Health Disparities - RCMI Program, University of Puerto Rico, San Juan, Puerto Rico
| | - Kathrin Tyryshkin
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON, Canada
| | | | - Artem G Lada
- Department Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Lennard Y Poliakov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Elena Schwartz
- Coordinating Center for Clinical Trials, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia.,Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, Moscow, Russia
| | - David N Cooper
- Institute of Medical Genetics, Cardiff University, Cardiff, United Kingdom
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON, Canada
| | - Youri I Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE, United States.,Department of Microbiology and Pathology, Biochemistry and Molecular Biology, Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|