1
|
Yadalam PK, Arumuganainar D, Natarajan PM, Ardila CM. Predicting the hub interactome of COVID-19 and oral squamous cell carcinoma: uncovering ALDH-mediated Wnt/β-catenin pathway activation via salivary inflammatory proteins. Sci Rep 2025; 15:4068. [PMID: 39901050 PMCID: PMC11790915 DOI: 10.1038/s41598-025-88819-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/31/2025] [Indexed: 02/05/2025] Open
Abstract
Understanding shared pathways and mechanisms involved in the pathogenesis of diseases like oral squamous cell carcinoma (OSCC) and COVID-19 could lead to the development of novel therapeutic strategies and diagnostic biomarkers. This study aims to predict the interactome of OSCC and COVID-19 based on salivary inflammatory proteins. Datasets for OSCC and COVID-19 were obtained from https://www.salivaryproteome.org/differential-expression and selected for differential gene expression analysis. Differential gene expression analysis was performed using log transformation and a fold change of two. Hub proteins were identified using Cytoscape and Cytohubba, and machine learning algorithms including naïve Bayes, neural networks, gradient boosting, and random forest were used to predict hub genes. Top hub genes identified included ALDH1A1, MT-CO2, SERPINC1, FGB, and TF. The random forest model achieved the highest accuracy (93%) and class accuracy (84%). The naive Bayes model had lower accuracy (63%) and class accuracy (66%), while the neural network model showed 55% accuracy and class accuracy, possibly due to data pre-processing issues. The gradient boosting model outperformed all models with an accuracy of 95% and class accuracy of 95%. Salivary proteomic interactome analysis revealed novel hub proteins as potential common biomarkers.
Collapse
Affiliation(s)
- Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Institute of Medical and Technology sciences, Saveetha Dental College, SIMATS, Saveetha University, Chennai, Tamil Nadu, India
| | - Deepavalli Arumuganainar
- Department of Periodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Center of Medical and Bio-allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman, United Arab Emirates.
| | - Carlos M Ardila
- Basic Sciences Department, Faculty of Dentistry, University of Antioquia, U de A, Medellín, Colombia.
| |
Collapse
|
2
|
Huang ETC, Yang JS, Liao KYK, Tseng WCW, Lee CK, Gill M, Compas C, See S, Tsai FJ. Predicting blood-brain barrier permeability of molecules with a large language model and machine learning. Sci Rep 2024; 14:15844. [PMID: 38982309 PMCID: PMC11233737 DOI: 10.1038/s41598-024-66897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024] Open
Abstract
Predicting the blood-brain barrier (BBB) permeability of small-molecule compounds using a novel artificial intelligence platform is necessary for drug discovery. Machine learning and a large language model on artificial intelligence (AI) tools improve the accuracy and shorten the time for new drug development. The primary goal of this research is to develop artificial intelligence (AI) computing models and novel deep learning architectures capable of predicting whether molecules can permeate the human blood-brain barrier (BBB). The in silico (computational) and in vitro (experimental) results were validated by the Natural Products Research Laboratories (NPRL) at China Medical University Hospital (CMUH). The transformer-based MegaMolBART was used as the simplified molecular input line entry system (SMILES) encoder with an XGBoost classifier as an in silico method to check if a molecule could cross through the BBB. We used Morgan or Circular fingerprints to apply the Morgan algorithm to a set of atomic invariants as a baseline encoder also with an XGBoost classifier to compare the results. BBB permeability was assessed in vitro using three-dimensional (3D) human BBB spheroids (human brain microvascular endothelial cells, brain vascular pericytes, and astrocytes). Using multiple BBB databases, the results of the final in silico transformer and XGBoost model achieved an area under the receiver operating characteristic curve of 0.88 on the held-out test dataset. Temozolomide (TMZ) and 21 randomly selected BBB permeable compounds (Pred scores = 1, indicating BBB-permeable) from the NPRL penetrated human BBB spheroid cells. No evidence suggests that ferulic acid or five BBB-impermeable compounds (Pred scores < 1.29423E-05, which designate compounds that pass through the human BBB) can pass through the spheroid cells of the BBB. Our validation of in vitro experiments indicated that the in silico prediction of small-molecule permeation in the BBB model is accurate. Transformer-based models like MegaMolBART, leveraging the SMILES representations of molecules, show great promise for applications in new drug discovery. These models have the potential to accelerate the development of novel targeted treatments for disorders of the central nervous system.
Collapse
Affiliation(s)
- Eddie T C Huang
- NVIDIA AI Technology Center, NVIDIA Corporation, Santa Clara, USA
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ken Y K Liao
- NVIDIA AI Technology Center, NVIDIA Corporation, Santa Clara, USA
| | - Warren C W Tseng
- NVIDIA AI Technology Center, NVIDIA Corporation, Santa Clara, USA
| | - C K Lee
- NVIDIA AI Technology Center, NVIDIA Corporation, Santa Clara, USA
| | - Michelle Gill
- NVIDIA AI Technology Center, NVIDIA Corporation, Santa Clara, USA
| | - Colin Compas
- NVIDIA AI Technology Center, NVIDIA Corporation, Santa Clara, USA
| | - Simon See
- NVIDIA AI Technology Center, NVIDIA Corporation, Santa Clara, USA
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, China Medical University Children's Hospital, No. 2, Yude Road, Taichung, 404332, Taiwan.
- China Medical University Children's Hospital, Taichung, Taiwan.
| |
Collapse
|
3
|
Ghanem M, Ghaith AK, Zamanian C, Bon-Nieves A, Bhandarkar A, Bydon M, Quiñones-Hinojosa A. Deep Learning Approaches for Glioblastoma Prognosis in Resource-Limited Settings: A Study Using Basic Patient Demographic, Clinical, and Surgical Inputs. World Neurosurg 2023; 175:e1089-e1109. [PMID: 37088416 DOI: 10.1016/j.wneu.2023.04.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Glioblastoma (GBM) is the most common brain tumor in the United States, with an annual incidence rate of 3.21 per 100,000. It is the most aggressive type of diffuse glioma and has a median survival of months after treatment. This study aims to assess the accuracy of different novel deep learning models trained on a set of simple clinical, demographic, and surgical variables to assist in clinical practice, even in areas with constrained health care infrastructure. METHODS Our study included 37,095 patients with GBM from the SEER (Surveillance Epidemiology and End Results) database. All predictors were based on demographic, clinicopathologic, and treatment information of the cases. Our outcomes of interest were months of survival and vital status. Concordance index (C-index) and integrated Brier scores (IBS) were used to evaluate the performance of the models. RESULTS The patient characteristics and the statistical analyses were consistent with the epidemiologic literature. The models C-index and IBS ranged from 0.6743 to 0.6918 and from 0.0934 to 0.1034, respectively. Probabilistic matrix factorization (0.6918), multitask logistic regression (0.6916), and logistic hazard (0.6916) had the highest C-index scores. The models with the lowest IBS were the probabilistic matrix factorization (0.0934), multitask logistic regression (0.0935), and logistic hazard (0.0936). These models had an accuracy (1-IBS) of 90.66%; 90.65%, and 90.64%, respectively. The deep learning algorithms were deployed on an interactive Web-based tool for practical use available via https://glioblastoma-survanalysis.herokuapp.com/. CONCLUSIONS Novel deep learning algorithms can better predict GBM prognosis than do baseline methods and can lead to more personalized patient care regardless of extensive electronic health record availability.
Collapse
Affiliation(s)
- Marc Ghanem
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Abdul Karim Ghaith
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, Minnesota, USA; Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Cameron Zamanian
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, Minnesota, USA; Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Antonio Bon-Nieves
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, Minnesota, USA; Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Archis Bhandarkar
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, Minnesota, USA; Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Mohamad Bydon
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, Minnesota, USA; Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA.
| | | |
Collapse
|
4
|
Ghosh A, Bir A. Evaluating ChatGPT's Ability to Solve Higher-Order Questions on the Competency-Based Medical Education Curriculum in Medical Biochemistry. Cureus 2023; 15:e37023. [PMID: 37143631 PMCID: PMC10152308 DOI: 10.7759/cureus.37023] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2023] [Indexed: 04/04/2023] Open
Abstract
Background Healthcare-related artificial intelligence (AI) is developing. The capacity of the system to carry out sophisticated cognitive processes, such as problem-solving, decision-making, reasoning, and perceiving, is referred to as higher cognitive thinking in AI. This kind of thinking requires more than just processing facts; it also entails comprehending and working with abstract ideas, evaluating and applying data relevant to the context, and producing new insights based on prior learning and experience. ChatGPT is an artificial intelligence-based conversational software that can engage with people to answer questions and uses natural language processing models. The platform has created a worldwide buzz and keeps setting an ongoing trend in solving many complex problems in various dimensions. Nevertheless, ChatGPT's capacity to correctly respond to queries requiring higher-level thinking in medical biochemistry has not yet been investigated. So, this research aimed to evaluate ChatGPT's aptitude for responding to higher-order questions on medical biochemistry. Objective In this study, our objective was to determine whether ChatGPT can address higher-order problems related to medical biochemistry. Methods This cross-sectional study was done online by conversing with the current version of ChatGPT (14 March 2023, which is presently free for registered users). It was presented with 200 medical biochemistry reasoning questions that require higher-order thinking. These questions were randomly picked from the institution's question bank and classified according to the Competency-Based Medical Education (CBME) curriculum's competency modules. The responses were collected and archived for subsequent research. Two expert biochemistry academicians examined the replies on a zero to five scale. The score's accuracy was determined by a one-sample Wilcoxon signed rank test using hypothetical values. Result The AI software answered 200 questions requiring higher-order thinking with a median score of 4.0 (Q1=3.50, Q3=4.50). Using a single sample Wilcoxon signed rank test, the result was less than the hypothetical maximum of five (p=0.001) and comparable to four (p=0.16). There was no difference in the replies to questions from different CBME modules in medical biochemistry (Kruskal-Wallis p=0.39). The inter-rater reliability of the scores scored by two biochemistry faculty members was outstanding (ICC=0.926 (95% CI: 0.814-0.971); F=19; p=0.001) Conclusion The results of this research indicate that ChatGPT has the potential to be a successful tool for answering questions requiring higher-order thinking in medical biochemistry, with a median score of four out of five. However, continuous training and development with data of recent advances are essential to improve performance and make it functional for the ever-growing field of academic medical usage.
Collapse
|
5
|
Kisiel A, Krzemińska A, Cembrowska-Lech D, Miller T. Data Science and Plant Metabolomics. Metabolites 2023; 13:metabo13030454. [PMID: 36984894 PMCID: PMC10054611 DOI: 10.3390/metabo13030454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The study of plant metabolism is one of the most complex tasks, mainly due to the huge amount and structural diversity of metabolites, as well as the fact that they react to changes in the environment and ultimately influence each other. Metabolic profiling is most often carried out using tools that include mass spectrometry (MS), which is one of the most powerful analytical methods. All this means that even when analyzing a single sample, we can obtain thousands of data. Data science has the potential to revolutionize our understanding of plant metabolism. This review demonstrates that machine learning, network analysis, and statistical modeling are some techniques being used to analyze large quantities of complex data that provide insights into plant development, growth, and how they interact with their environment. These findings could be key to improving crop yields, developing new forms of plant biotechnology, and understanding the relationship between plants and microbes. It is also necessary to consider the constraints that come with data science such as quality and availability of data, model complexity, and the need for deep knowledge of the subject in order to achieve reliable outcomes.
Collapse
Affiliation(s)
- Anna Kisiel
- Institute of Marine and Environmental Sciences, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
- Polish Society of Bioinformatics and Data Science BIODATA, Popiełuszki 4c, 71-214 Szczecin, Poland
| | - Adrianna Krzemińska
- Polish Society of Bioinformatics and Data Science BIODATA, Popiełuszki 4c, 71-214 Szczecin, Poland
| | - Danuta Cembrowska-Lech
- Polish Society of Bioinformatics and Data Science BIODATA, Popiełuszki 4c, 71-214 Szczecin, Poland
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland
| | - Tymoteusz Miller
- Institute of Marine and Environmental Sciences, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
- Polish Society of Bioinformatics and Data Science BIODATA, Popiełuszki 4c, 71-214 Szczecin, Poland
| |
Collapse
|
6
|
Tysinger EP, Rai BK, Sinitskiy AV. Can We Quickly Learn to "Translate" Bioactive Molecules with Transformer Models? J Chem Inf Model 2023; 63:1734-1744. [PMID: 36914216 DOI: 10.1021/acs.jcim.2c01618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Meaningful exploration of the chemical space of druglike molecules in drug design is a highly challenging task due to a combinatorial explosion of possible modifications of molecules. In this work, we address this problem with transformer models, a type of machine learning (ML) model originally developed for machine translation. By training transformer models on pairs of similar bioactive molecules from the public ChEMBL data set, we enable them to learn medicinal-chemistry-meaningful, context-dependent transformations of molecules, including those absent from the training set. By retrospective analysis on the performance of transformer models on ChEMBL subsets of ligands binding to COX2, DRD2, or HERG protein targets, we demonstrate that the models can generate structures identical or highly similar to most active ligands, despite the models having not seen any ligands active against the corresponding protein target during training. Our work demonstrates that human experts working on hit expansion in drug design can easily and quickly employ transformer models, originally developed to translate texts from one natural language to another, to "translate" from known molecules active against a given protein target to novel molecules active against the same target.
Collapse
Affiliation(s)
- Emma P Tysinger
- Machine Learning and Computational Sciences, Pfizer Worldwide Research, Development, and Medical, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Brajesh K Rai
- Machine Learning and Computational Sciences, Pfizer Worldwide Research, Development, and Medical, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Anton V Sinitskiy
- Machine Learning and Computational Sciences, Pfizer Worldwide Research, Development, and Medical, 610 Main Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Pantic I, Paunovic J, Pejic S, Drakulic D, Todorovic A, Stankovic S, Vucevic D, Cumic J, Radosavljevic T. Artificial intelligence approaches to the biochemistry of oxidative stress: Current state of the art. Chem Biol Interact 2022; 358:109888. [PMID: 35296431 DOI: 10.1016/j.cbi.2022.109888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023]
Abstract
Artificial intelligence (AI) and machine learning models are today frequently used for classification and prediction of various biochemical processes and phenomena. In recent years, numerous research efforts have been focused on developing such models for assessment, categorization, and prediction of oxidative stress. Supervised machine learning can successfully automate the process of evaluation and quantification of oxidative damage in biological samples, as well as extract useful data from the abundance of experimental results. In this concise review, we cover the possible applications of neural networks, decision trees and regression analysis as three common strategies in machine learning. We also review recent works on the various weaknesses and limitations of artificial intelligence in biochemistry and related scientific areas. Finally, we discuss future innovative approaches on the ways how AI can contribute to the automation of oxidative stress measurement and diagnosis of diseases associated with oxidative damage.
Collapse
Affiliation(s)
- Igor Pantic
- University of Belgrade, Faculty of Medicine, Institute of Medical Physiology, Laboratory for Cellular Physiology, Visegradska 26/II, RS-11129, Belgrade, Serbia; University of Haifa, 199 Abba Hushi Blvd, Mount Carmel, Haifa, IL, 3498838, Israel; Ben-Gurion University of the Negev, Faculty of Health Sciences, Department of Physiology and Cell Biology, 84105 Be'er Sheva, Israel.
| | - Jovana Paunovic
- University of Belgrade, Faculty of Medicine, Institute of Pathological Physiology, Dr Subotica 9, RS-11129, Belgrade, Serbia
| | - Snezana Pejic
- University of Belgrade, Vinca Institute of Nuclear Sciences, Department of Molecular Biology and Endocrinology, Mike Petrovica Alasa 12-14, RS-11351, Belgrade, Serbia
| | - Dunja Drakulic
- University of Belgrade, Vinca Institute of Nuclear Sciences, Department of Molecular Biology and Endocrinology, Mike Petrovica Alasa 12-14, RS-11351, Belgrade, Serbia
| | - Ana Todorovic
- University of Belgrade, Vinca Institute of Nuclear Sciences, Department of Molecular Biology and Endocrinology, Mike Petrovica Alasa 12-14, RS-11351, Belgrade, Serbia
| | - Sanja Stankovic
- University Clinical Centre of Serbia, Centre for Medical Biochemistry, Visegradska 26, RS-11000, Belgrade, Serbia; University of Kragujevac, Faculty of Medical Sciences, Svetozara Markovica 69, RS-34000, Kragujevac, Serbia
| | - Danijela Vucevic
- University of Belgrade, Faculty of Medicine, Institute of Pathological Physiology, Dr Subotica 9, RS-11129, Belgrade, Serbia
| | - Jelena Cumic
- University of Belgrade, Faculty of Medicine, University Clinical Centre of Serbia, Dr. Koste Todorovića 8, RS-11129, Belgrade, Serbia
| | - Tatjana Radosavljevic
- University of Belgrade, Faculty of Medicine, Institute of Pathological Physiology, Dr Subotica 9, RS-11129, Belgrade, Serbia
| |
Collapse
|
8
|
Baltrukevich H, Podlewska S. From Data to Knowledge: Systematic Review of Tools for Automatic Analysis of Molecular Dynamics Output. Front Pharmacol 2022; 13:844293. [PMID: 35359865 PMCID: PMC8960308 DOI: 10.3389/fphar.2022.844293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 12/02/2022] Open
Abstract
An increasing number of crystal structures available on one side, and the boost of computational power available for computer-aided drug design tasks on the other, have caused that the structure-based drug design tools are intensively used in the drug development pipelines. Docking and molecular dynamics simulations, key representatives of the structure-based approaches, provide detailed information about the potential interaction of a ligand with a target receptor. However, at the same time, they require a three-dimensional structure of a protein and a relatively high amount of computational resources. Nowadays, as both docking and molecular dynamics are much more extensively used, the amount of data output from these procedures is also growing. Therefore, there are also more and more approaches that facilitate the analysis and interpretation of the results of structure-based tools. In this review, we will comprehensively summarize approaches for handling molecular dynamics simulations output. It will cover both statistical and machine-learning-based tools, as well as various forms of depiction of molecular dynamics output.
Collapse
Affiliation(s)
- Hanna Baltrukevich
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
- Faculty of Pharmacy, Chair of Technology and Biotechnology of Medical Remedies, Jagiellonian University Medical College in Krakow, Kraków, Poland
| | - Sabina Podlewska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
9
|
Mak KK, Balijepalli MK, Pichika MR. Success stories of AI in drug discovery - where do things stand? Expert Opin Drug Discov 2021; 17:79-92. [PMID: 34553659 DOI: 10.1080/17460441.2022.1985108] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Artificial intelligence (AI) in drug discovery and development (DDD) has gained more traction in the past few years. Many scientific reviews have already been made available in this area. Thus, in this review, the authors have focused on the success stories of AI-driven drug candidates and the scientometric analysis of the literature in this field. AREA COVERED The authors explore the literature to compile the success stories of AI-driven drug candidates that are currently being assessed in clinical trials or have investigational new drug (IND) status. The authors also provide the reader with their expert perspectives for future developments and their opinions on the field. EXPERT OPINION Partnerships between AI companies and the pharma industry are booming. The early signs of the impact of AI on DDD are encouraging, and the pharma industry is hoping for breakthroughs. AI can be a promising technology to unveil the greatest successes, but it has yet to be proven as AI is still at the embryonic stage.
Collapse
Affiliation(s)
- Kit-Kay Mak
- School of Postgraduate Studies and Research, International Medical University, Bukit Jalil, Malaysia.,Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil, Malaysia.,Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development, and Innovation (Irdi), International Medical University, Bukit Jalil, Malaysia
| | | | - Mallikarjuna Rao Pichika
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil, Malaysia.,Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development, and Innovation (Irdi), International Medical University, Bukit Jalil, Malaysia
| |
Collapse
|
10
|
Dato S, Crocco P, Rambaldi Migliore N, Lescai F. Omics in a Digital World: The Role of Bioinformatics in Providing New Insights Into Human Aging. Front Genet 2021; 12:689824. [PMID: 34178042 PMCID: PMC8225294 DOI: 10.3389/fgene.2021.689824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Background Aging is a complex phenotype influenced by a combination of genetic and environmental factors. Although many studies addressed its cellular and physiological age-related changes, the molecular causes of aging remain undetermined. Considering the biological complexity and heterogeneity of the aging process, it is now clear that full understanding of mechanisms underlying aging can only be achieved through the integration of different data types and sources, and with new computational methods capable to achieve such integration. Recent Advances In this review, we show that an omics vision of the age-dependent changes occurring as the individual ages can provide researchers with new opportunities to understand the mechanisms of aging. Combining results from single-cell analysis with systems biology tools would allow building interaction networks and investigate how these networks are perturbed during aging and disease. The development of high-throughput technologies such as next-generation sequencing, proteomics, metabolomics, able to investigate different biological markers and to monitor them simultaneously during the aging process with high accuracy and specificity, represents a unique opportunity offered to biogerontologists today. Critical Issues Although the capacity to produce big data drastically increased over the years, integration, interpretation and sharing of high-throughput data remain major challenges. In this paper we present a survey of the emerging omics approaches in aging research and provide a large collection of datasets and databases as a useful resource for the scientific community to identify causes of aging. We discuss their peculiarities, emphasizing the need for the development of methods focused on the integration of different data types. Future Directions We critically review the contribution of bioinformatics into the omics of aging research, and we propose a few recommendations to boost collaborations and produce new insights. We believe that significant advancements can be achieved by following major developments in bioinformatics, investing in diversity, data sharing and community-driven portable bioinformatics methods. We also argue in favor of more engagement and participation, and we highlight the benefits of new collaborations along these lines. This review aims at being a useful resource for many researchers in the field, and a call for new partnerships in aging research.
Collapse
Affiliation(s)
- Serena Dato
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Paolina Crocco
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | | | - Francesco Lescai
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|