1
|
Dai D, Huang L, Zhang X, Zhang S, Liu J, Yuan X, Chen X, Xue C. Identification and functional analysis of GmPasL regulating pod color in vegetable soybean. BMC PLANT BIOLOGY 2024; 24:925. [PMID: 39367325 PMCID: PMC11451118 DOI: 10.1186/s12870-024-05643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Vegetable soybean is rich in nutrients and has a unique flavor. It is highly preferred by people because of its pharmacological activities, including those that regulate the intestines and lower blood pressure. The pod color of vegetable soybeans is an important quality that indicates their freshness and has a significant impact on their commercialization. RESULTS In this study, pod color was evaluated in 301 vegetable soybean accessions collected from various regions. Genome-wide association analysis was carried out using the Mixed linear model (MLM), a total of 18 quantitative trait loci including 117 SNPs were detected. Two significant QTLs located on chromosomes 6 (qGPCL4 /qGPCa1/qGPCb2) and 18 (qGPCL10/qGPCb3) were consistently detected across different variables. Based on gene functional annotation, 30 candidate genes were identified in these two candidate intervals. Combined with transcriptome analysis, Glyma.18g241700 has been identified as a candidate gene for regulating pod color in vegetable soybeans. Glyma.18g241700 encodes a chlorophyll photosystem I subunit XI. which localizes to the chloroplast named GmPsaL, qRT-PCR analysis showed that GmPsaL was specifically highly expressed in developing pods. Furthermore, overexpression of GmPsaL in transgenetic Arabidopsis plants produced dark green pods. CONCLUSIONS These findings may be useful for clarifying the genetic basis of the pod color of vegetable soybeans. The identified candidate genes may be useful for the genetic improvement of the appearance quality of vegetable soybeans.
Collapse
Affiliation(s)
- Dongqing Dai
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Lu Huang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiaoyan Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Shiqi Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jinyang Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Chenchen Xue
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
2
|
Yang P, Zhao Z, Fan J, Liang Y, Bernier MC, Gao Y, Zhao L, Opiyo SO, Xia Y. Bacillus proteolyticus OSUB18 triggers induced systemic resistance against bacterial and fungal pathogens in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1078100. [PMID: 36755698 PMCID: PMC9900001 DOI: 10.3389/fpls.2023.1078100] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/04/2023] [Indexed: 05/27/2023]
Abstract
Pseudomonas syringae and Botrytis cinerea cause destructive bacterial speck and grey mold diseases in many plant species, leading to substantial economic losses in agricultural production. Our study discovered that the application of Bacillus proteolyticus strain OSUB18 as a root-drench enhanced the resistance of Arabidopsis plants against P. syringae and B. cinerea through activating Induced Systemic Resistance (ISR). The underlying mechanisms by which OSUB18 activates ISR were studied. Our results revealed that the Arabidopsis plants with OSUB18 root-drench showed the enhanced callose deposition and ROS production when inoculated with Pseudomonas syringae and Botrytis cinerea pathogens, respectively. Also, the increased salicylic acid (SA) levels were detected in the OSUB18 root-drenched plants compared with the water root-drenched plants after the P. syringae infection. In contrast, the OSUB18 root-drenched plants produced significantly higher levels of jasmonyl isoleucine (JA-Ile) than the water root-drenched control after the B. cinerea infection. The qRT-PCR analyses indicated that the ISR-responsive gene MYC2 and the ROS-responsive gene RBOHD were significantly upregulated in OSUB18 root-drenched plants upon both pathogen infections compared with the controls. Also, twenty-four hours after the bacterial or fungal inoculation, the OSUB18 root-drenched plants showed the upregulated expression levels of SA-related genes (PR1, PR2, PR5, EDS5, and SID2) or JA-related genes (PDF1.2, LOX3, JAR1 and COI1), respectively, which were consistent with the related hormone levels upon these two different pathogen infections. Moreover, OSUB18 can trigger ISR in jar1 or sid2 mutants but not in myc2 or npr1 mutants, depending on the pathogen's lifestyles. In addition, OSUB18 prompted the production of acetoin, which was reported as a novel rhizobacterial ISR elicitor. In summary, our studies discover that OSUB18 is a novel ISR inducer that primes plants' resistance against bacterial and fungal pathogens by enhancing the callose deposition and ROS accumulation, increasing the production of specific phytohormones and other metabolites involved in plant defense, and elevating the expression levels of multiple defense genes.
Collapse
Affiliation(s)
- Piao Yang
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, OH, United States
| | - Zhenzhen Zhao
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, OH, United States
| | - Jiangbo Fan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yinping Liang
- College of Grassland Science, Shanxi Agriculture University, Taigu, China
| | - Matthew C. Bernier
- Campus Chemical Instrument Center, Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH, United States
| | - Yu Gao
- Ohio State University (OSU) South Centers, Piketon, OH, United States
- Department of Extension, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, United States
| | - Lijing Zhao
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, OH, United States
| | - Stephen Obol Opiyo
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, OH, United States
| | - Ye Xia
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
3
|
Linh NM, Scarpella E. Confocal Imaging of Developing Leaves. Curr Protoc 2022; 2:e349. [PMID: 35072973 DOI: 10.1002/cpz1.349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Questions in developmental biology are most frequently addressed by using fluorescent markers of otherwise invisible cell states. In plants, such questions can be addressed most conveniently in leaves. Indeed, from the formation of stomata and trichomes within the leaf epidermis to that of vein networks deep into the leaf inner tissue, leaf cells and tissues differentiate anew during the development of each leaf. Moreover, leaves are produced in abundance and are easily accessible to visualization and perturbation. Yet a detailed procedure for the perturbation, dissection, mounting, and imaging of developing leaves has not been described. Here we address this limitation (1) by providing robust, step-by-step protocols for the local application of the plant hormone auxin to developing leaves and for the routine dissection and mounting of leaves and leaf primordia, and (2) by offering practical guidelines for the optimization of imaging parameters for confocal microscopy. We describe the procedure for the first leaves of Arabidopsis, but the same approach can be easily applied to other leaves of Arabidopsis or to leaves of other plants. © 2022 Wiley Periodicals LLC. Support Protocol 1: Preparation of plant growth medium Support Protocol 2: Preparation of growth medium plates Basic Protocol 1: Seed sterilization, sowing, and germination, and seedling growth Support Protocol 3: Preparation of IAA-lanolin paste Basic Protocol 2: Application of IAA-lanolin paste to 3.5-DAG first leaves Basic Protocol 3: Dissection of 3- to 6-DAG first leaves and leaf primordia Basic Protocol 4: Dissection of 1- and 2-DAG first-leaf primordia Basic Protocol 5: Mounting of dissected leaves and leaf primordia Support Protocol 4: Quality check of mounted leaves and leaf primordia by fluorescence microscopy Basic Protocol 6: Imaging of mounted leaves and leaf primordia by confocal microscopy.
Collapse
Affiliation(s)
- Nguyen Manh Linh
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Weigand C, Kim SH, Brown E, Medina E, Mares M, Miller G, Harper JF, Choi WG. A Ratiometric Calcium Reporter CGf Reveals Calcium Dynamics Both in the Single Cell and Whole Plant Levels Under Heat Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:777975. [PMID: 34975960 PMCID: PMC8718611 DOI: 10.3389/fpls.2021.777975] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/17/2021] [Indexed: 05/02/2023]
Abstract
Land plants evolved to quickly sense and adapt to temperature changes, such as hot days and cold nights. Given that calcium (Ca2+) signaling networks are implicated in most abiotic stress responses, heat-triggered changes in cytosolic Ca2+ were investigated in Arabidopsis leaves and pollen. Plants were engineered with a reporter called CGf, a ratiometric, genetically encoded Ca2+ reporter with an mCherry reference domain fused to an intensiometric Ca2+ reporter GCaMP6f. Relative changes in [Ca2+]cyt were estimated based on CGf's apparent K D around 220 nM. The ratiometric output provided an opportunity to compare Ca2+ dynamics between different tissues, cell types, or subcellular locations. In leaves, CGf detected heat-triggered cytosolic Ca2+ signals, comprised of three different signatures showing similarly rapid rates of Ca2+ influx followed by differing rates of efflux (50% durations ranging from 5 to 19 min). These heat-triggered Ca2+ signals were approximately 1.5-fold greater in magnitude than blue light-triggered signals in the same leaves. In contrast, growing pollen tubes showed two different heat-triggered responses. Exposure to heat caused tip-focused steady growth [Ca2+]cyt oscillations to shift to a pattern characteristic of a growth arrest (22%), or an almost undetectable [Ca2+]cyt (78%). Together, these contrasting examples of heat-triggered Ca2+ responses in leaves and pollen highlight the diversity of Ca2+ signals in plants, inviting speculations about their differing kinetic features and biological functions.
Collapse
Affiliation(s)
- Chrystle Weigand
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
| | - Su-Hwa Kim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
| | - Elizabeth Brown
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
| | - Emily Medina
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
| | - Moises Mares
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Jeffrey F. Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
- *Correspondence: Jeffrey F. Harper,
| | - Won-Gyu Choi
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
- Won-Gyu Choi,
| |
Collapse
|
5
|
Cortese E, Carraretto L, Baldan B, Navazio L. Arabidopsis Photosynthetic and Heterotrophic Cell Suspension Cultures. Methods Mol Biol 2020; 2200:167-185. [PMID: 33175378 DOI: 10.1007/978-1-0716-0880-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Cell suspension cultures represent a widely used experimental tool suitable to perform a variety of structural and physiological studies in a more simplified system compared to the organism in toto. In this chapter we describe the methods routinely used in our laboratory to establish and maintain Arabidopsis photosynthetic and heterotrophic cell suspension cultures, containing either chloroplasts or amyloplasts, respectively. The use of these in vitro systems may allow to obtain insights into the unique features of chloroplasts versus non-green plastids, as well as their integration in the structural and metabolic compartmentalization of the plant cell.
Collapse
Affiliation(s)
- Enrico Cortese
- Department of Biology, University of Padova, Padova, Italy
| | | | - Barbara Baldan
- Department of Biology, University of Padova, Padova, Italy.,Botanical Garden, University of Padova, Padova, Italy
| | - Lorella Navazio
- Department of Biology, University of Padova, Padova, Italy. .,Botanical Garden, University of Padova, Padova, Italy.
| |
Collapse
|