1
|
Monteiro AFM, da Silva FS, Cruz ACR, da Silva SP, Queiroz ALN, Casseb LMN, Martins LC, Medeiros DBDA. Viral diversity in wild rodents in the regions of Canaã de Carajás and Curionopólis, State of Pará, Brazil. Front Microbiol 2025; 15:1502462. [PMID: 39839123 PMCID: PMC11747277 DOI: 10.3389/fmicb.2024.1502462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025] Open
Abstract
Wild rodents serve as crucial reservoirs for zoonotic viruses. Anthropogenic and environmental disruptions, particularly those induced by mining activities, can destabilize rodent populations and facilitate the emergence of viral agents. In the Canaã dos Carajás and Curionópolis regions of Brazil, significant environmental changes have occurred due to mining expansion, potentially creating conditions conducive to the emergence of rodent-associated viral diseases. This study aimed to investigate the viral diversity in wild rodents captured in Canaã dos Carajás and Curionópolis, Pará, between 2017 and 2019. A total of 102 rodent samples were taxonomically identified through karyotyping and screened for anti-Orthohantavirus antibodies using the ELISA method. Subsequently, nucleotide sequencing and bioinformatics analyses were conducted on 14 selected samples to characterize the virome. This selection was based on the most commonly associated rodent genera as reservoirs of Orthohantavirus and Mammarenavirus. Of the 102 samples tested via ELISA, 100 were negative, and two showed optical density at the cutoff point. Sequencing of the 14 samples generated approximately 520 million reads, with 409 million retained after quality control. These reads were categorized into 53 viral families, including both DNA and RNA viruses, with Retroviridae, Baculoviridae, and Microviridae being the most abundant. Viral contigs were identified, including one fragment related to Arenaviridae and three to Filoviridae. Metagenomic analysis revealed high viral diversity in the sampled rodents, with the presence of viral families of public health concern, such as Arenaviridae and Filoviridae. The findings suggest that increased human activities associated with mining may contribute to the emergence of these viruses, underscoring the need for ongoing surveillance to prevent potential outbreaks.
Collapse
Affiliation(s)
- Adriana Freitas Moraes Monteiro
- Graduate Program in Virology, Evandro Chagas Institute — IEC/MS/SVSA, Ananindeua, Brazil
- Evandro Chagas Institute — IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua, Brazil
| | - Fábio Silva da Silva
- Evandro Chagas Institute — IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua, Brazil
| | - Ana Cecília Ribeiro Cruz
- Graduate Program in Virology, Evandro Chagas Institute — IEC/MS/SVSA, Ananindeua, Brazil
- Evandro Chagas Institute — IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua, Brazil
| | - Sandro Patroca da Silva
- Evandro Chagas Institute — IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua, Brazil
| | - Alice Louize Nunes Queiroz
- Evandro Chagas Institute — IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua, Brazil
| | - Livia Medeiros Neves Casseb
- Graduate Program in Virology, Evandro Chagas Institute — IEC/MS/SVSA, Ananindeua, Brazil
- Evandro Chagas Institute — IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua, Brazil
| | - Livia Carício Martins
- Graduate Program in Virology, Evandro Chagas Institute — IEC/MS/SVSA, Ananindeua, Brazil
- Evandro Chagas Institute — IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua, Brazil
| | - Daniele Barbosa de Almeida Medeiros
- Graduate Program in Virology, Evandro Chagas Institute — IEC/MS/SVSA, Ananindeua, Brazil
- Evandro Chagas Institute — IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua, Brazil
| |
Collapse
|
2
|
Zachariah A, Krishnankutty SP, Manazhi J, Omanakuttan V, Santosh S, Blanchard A, Tarlinton R. Lack of detection of SARS-CoV-2 in wildlife from Kerala, India in 2020-21. Access Microbiol 2024; 6:000686.v3. [PMID: 38361659 PMCID: PMC10866034 DOI: 10.1099/acmi.0.000686.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
Spillover of SARS-CoV-2 into a variety of wild and domestic animals has been an ongoing feature of the human pandemic. The establishment of a new reservoir in white-tailed deer in North America and increasing divergence of the viruses circulating in them from those circulating in the human population has highlighted the ongoing risk this poses for global health. Some parts of the world have seen more intensive monitoring of wildlife species for SARS-CoV-2 and related coronaviruses but there are still very large gaps in geographical and species-specific information. This paper reports negative results for SARS-CoV-2 PCR based testing using a pan coronavirus end point RDRP PCR and a Sarbecovirus specific E gene qPCR on lung and or gut tissue from wildlife from the Indian State of Kerala. These animals included: 121 Rhinolophus rouxii (Rufous Horsehoe Bat), six Rhinolophus bedommei (Lesser Woolly Horseshoe Bat), 15 Rossettus leschenaultii (Fulvous Fruit Bat), 47 Macaca radiata (Bonnet macaques), 35 Paradoxurus hermaphroditus (Common Palm Civet), five Viverricula indica (Small Indian Civet), four Herpestes edwardsii (Common Mongoose), ten Panthera tigris (Bengal Tiger), eight Panthera pardus fusca (Indian Leopard), four Prionailurus bengalensis (Leopard cats), two Felis chaus (Jungle cats), two Cuon alpinus (Wild dogs) and one Melursus ursinus (sloth bear).
Collapse
Affiliation(s)
| | | | | | | | | | - Adam Blanchard
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Rachael Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| |
Collapse
|
3
|
He X, Wang X, Fan G, Li F, Wu W, Wang Z, Fu M, Wei X, Ma S, Ma X. Metagenomic analysis of viromes in tissues of wild Qinghai vole from the eastern Tibetan Plateau. Sci Rep 2022; 12:17239. [PMID: 36241909 PMCID: PMC9562062 DOI: 10.1038/s41598-022-22134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/10/2022] [Indexed: 01/06/2023] Open
Abstract
Rodents are natural reservoirs of diverse zoonotic viruses and widely distributed on the Tibetan Plateau. A comprehensive understanding of the virome in local rodent species could provide baseline of viral content and assist in efforts to reduce the risk for future emergence of rodent related zoonotic diseases. A total of 205 tissue and fecal samples from 41 wild Qinghai voles were collected. Metagenomic analyses were performed to outline the characteristics of the viromes, and phylogenetic analyses were used to identify the novel viral genomes. The virome distribution among five tissues (liver, lung, spleen, small intestine with content and feces) was also compared. We identified sequences related to 46 viral families. Novel viral genomes from distinct evolutionary lineages with known viruses were characterized for their genomic and evolutionary characteristics, including Hepatovirus, Hepacivirus, Rotavirus, and Picobirnavirus. Further analyses revealed that the core virome harbored by rodent internal tissues were quite different from the virome found in intestine and fecal samples. These findings provide an overview of the viromes in wild Qinghai voles, which are unique and the most common rodent species in the eastern Tibetan Plateau. A high diversity of viruses is likely present in rodent species in this area.
Collapse
Affiliation(s)
- Xiaozhou He
- grid.198530.60000 0000 8803 2373NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China ,grid.9227.e0000000119573309Chinese Center for Disease Control and Prevention - Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Xu Wang
- grid.508378.1National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, People’s Republic of China
| | - Guohao Fan
- grid.198530.60000 0000 8803 2373NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China ,grid.9227.e0000000119573309Chinese Center for Disease Control and Prevention - Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Fan Li
- grid.198530.60000 0000 8803 2373NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Weiping Wu
- grid.508378.1National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, People’s Republic of China
| | - Zhenghuan Wang
- grid.22069.3f0000 0004 0369 6365School of Life Sciences, East China Normal University, Shanghai, People’s Republic of China
| | - Meihua Fu
- grid.430328.eShanghai Municipal Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Xu Wei
- grid.22069.3f0000 0004 0369 6365School of Life Sciences, East China Normal University, Shanghai, People’s Republic of China
| | - Shuo Ma
- grid.22069.3f0000 0004 0369 6365School of Life Sciences, East China Normal University, Shanghai, People’s Republic of China
| | - Xuejun Ma
- grid.198530.60000 0000 8803 2373NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China ,grid.9227.e0000000119573309Chinese Center for Disease Control and Prevention - Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| |
Collapse
|
4
|
Tarlinton R. Mustelid samples needed for coronavirus testing. Vet Rec 2022; 190:167. [DOI: 10.1002/vetr.1517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rachael Tarlinton
- School of Veterinary Medicine and Science University of Nottingham, Sutton Bonington Campus Leicestershire LE12 5RD
| |
Collapse
|