1
|
Gadek M, Sherr EH, Floor SN. The variant landscape and function of DDX3X in cancer and neurodevelopmental disorders. Trends Mol Med 2023; 29:726-739. [PMID: 37422363 DOI: 10.1016/j.molmed.2023.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
RNA molecules rely on proteins across their life cycle. DDX3X encodes an X-linked DEAD-box RNA helicase with a Y-linked paralog, DDX3Y. DDX3X is central to the RNA life cycle and is implicated in many conditions, including cancer and the neurodevelopmental disorder DDX3X syndrome. DDX3X-linked conditions often exhibit sex differences, possibly due to differences between expression or function of the X- and Y-linked paralogs DDX3X and DDX3Y. DDX3X-related diseases have different mutational landscapes, indicating different roles of DDX3X. Understanding the role of DDX3X in normal and disease states will inform the understanding of DDX3X in disease. We review the function of DDX3X and DDX3Y, discuss how mutation type and sex bias contribute to human diseases involving DDX3X, and review possible DDX3X-targeting treatments.
Collapse
Affiliation(s)
- Margaret Gadek
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Elliott H Sherr
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
2
|
A scalable framework for the discovery of functional helicase substrates and helicase-driven regulatory switches. Proc Natl Acad Sci U S A 2022; 119:e2209608119. [PMID: 36095194 PMCID: PMC9499579 DOI: 10.1073/pnas.2209608119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Helicases are ubiquitous motor enzymes that remodel nucleic acids (NA) and NA-protein complexes in key cellular processes. To explore the functional repertoire and specificity landscape of helicases, we devised a screening scheme-Helicase-SELEX (Systematic Evolution of Ligands by EXponential enrichment)-that enzymatically probes substrate and cofactor requirements at global scale. Using the transcription termination Rho helicase of Escherichia coli as a prototype for Helicase-SELEX, we generated a genome-wide map of Rho utilization (Rut) sites. The map reveals many features, including promoter- and intrinsic terminator-associated Rut sites, bidirectional Rut tandems, and cofactor-dependent Rut sites with inverted G > C skewed compositions. We also implemented an H-SELEX variant where we used a model ligand, serotonin, to evolve synthetic Rut sites operating in vitro and in vivo in a ligand-dependent manner. Altogether, our data illustrate the power and flexibility of Helicase-SELEX to seek constitutive or conditional helicase substrates in natural or synthetic NA libraries for fundamental or synthetic biology discovery.
Collapse
|
3
|
Abdelkrim YZ, Harigua-Souiai E, Bassoumi-Jamoussi I, Barhoumi M, Banroques J, Essafi-Benkhadir K, Nilges M, Blondel A, Tanner NK, Guizani I. Enzymatic and Molecular Characterization of Anti- Leishmania Molecules That Differently Target Leishmania and Mammalian eIF4A Proteins, LieIF4A and eIF4A Mus. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185890. [PMID: 36144626 PMCID: PMC9502374 DOI: 10.3390/molecules27185890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 02/05/2023]
Abstract
Previous investigations of the Leishmania infantum eIF4A-like protein (LieIF4A) as a potential drug target delivered cholestanol derivatives inhibitors. Here, we investigated the mode of action of cholesterol derivatives as a novel scaffold structure of LieIF4A inhibitors on the RNA-dependent ATPase activity of LieIF4A and its mammalian ortholog (eIF4AI). We compared their biochemical effects on RNA-dependent ATPase activities of both proteins and investigated if rocaglamide, a known inhibitor of eIF4A, could affect LieIF4A as well. Kinetic measurements were conducted at different concentrations of ATP, of the compound and in the presence of saturating whole yeast RNA concentrations. Kinetic analyses showed different ATP binding affinities for the two enzymes as well as different sensitivities to 7-α-aminocholesterol and rocaglamide. The 7-α-aminocholesterol inhibited LieIF4A with a higher binding affinity relative to cholestanol analogs. Cholesterol, another tested sterol, had no effect on the ATPase activity of LieIF4A or eIF4AI. The 7-α-aminocholesterol demonstrated an anti-Leishmania activity on L. infantum promastigotes. Additionally, docking simulations explained the importance of the double bond between C5 and C6 in 7-α-aminocholesterol and the amino group in the C7 position. In conclusion, Leishmania and mammalian eIF4A proteins appeared to interact differently with effectors, thus making LieIF4A a potential drug against leishmaniases.
Collapse
Affiliation(s)
- Yosser Zina Abdelkrim
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR11IPT04/LR16IPT04)/Laboratory of Epidemiology and Ecology of Parasites, Institut Pasteur de Tunis—University Tunis El Manar, Tunis 1002, Tunisia
- Université de Paris Cité & CNRS, Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, F-75005 Paris, France
- Correspondence: (Y.Z.A.); (I.G.)
| | - Emna Harigua-Souiai
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR11IPT04/LR16IPT04)/Laboratory of Epidemiology and Ecology of Parasites, Institut Pasteur de Tunis—University Tunis El Manar, Tunis 1002, Tunisia
| | - Imen Bassoumi-Jamoussi
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR11IPT04/LR16IPT04)/Laboratory of Epidemiology and Ecology of Parasites, Institut Pasteur de Tunis—University Tunis El Manar, Tunis 1002, Tunisia
| | - Mourad Barhoumi
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR11IPT04/LR16IPT04)/Laboratory of Epidemiology and Ecology of Parasites, Institut Pasteur de Tunis—University Tunis El Manar, Tunis 1002, Tunisia
| | - Josette Banroques
- Université de Paris Cité & CNRS, Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, F-75005 Paris, France
- Paris Sciences and Lettres Research University, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, F-75005 Paris, France
| | - Khadija Essafi-Benkhadir
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR11IPT04/LR16IPT04)/Laboratory of Epidemiology and Ecology of Parasites, Institut Pasteur de Tunis—University Tunis El Manar, Tunis 1002, Tunisia
| | - Michael Nilges
- Structural Bioinformatics Unit, Institut Pasteur, F-75015 Paris, France
| | - Arnaud Blondel
- Structural Bioinformatics Unit, Institut Pasteur, F-75015 Paris, France
| | - N. Kyle Tanner
- Université de Paris Cité & CNRS, Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, F-75005 Paris, France
- Paris Sciences and Lettres Research University, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, F-75005 Paris, France
| | - Ikram Guizani
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR11IPT04/LR16IPT04)/Laboratory of Epidemiology and Ecology of Parasites, Institut Pasteur de Tunis—University Tunis El Manar, Tunis 1002, Tunisia
- Correspondence: (Y.Z.A.); (I.G.)
| |
Collapse
|
4
|
Ruiz-Gutierrez N, Rieu M, Ouellet J, Allemand JF, Croquette V, Le Hir H. Novel approaches to study helicases using magnetic tweezers. Methods Enzymol 2022; 673:359-403. [PMID: 35965012 DOI: 10.1016/bs.mie.2022.03.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Helicases form a universal family of molecular motors that bind and translocate onto nucleic acids. They are involved in essentially every aspect of nucleic acid metabolism: from DNA replication to RNA decay, and thus ensure a large spectrum of functions in the cell, making their study essential. The development of micromanipulation techniques such as magnetic tweezers for the mechanistic study of these enzymes has provided new insights into their behavior and their regulation that were previously unrevealed by bulk assays. These experiments allowed very precise measures of their translocation speed, processivity and polarity. Here, we detail our newest technological advances in magnetic tweezers protocols for high-quality measurements and we describe the new procedures we developed to get a more profound understanding of helicase dynamics, such as their translocation in a force independent manner, their nucleic acid binding kinetics and their interaction with roadblocks.
Collapse
Affiliation(s)
- Nadia Ruiz-Gutierrez
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Martin Rieu
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France; Laboratoire de Physique de L'Ecole Normale Supérieure de Paris, CNRS, ENS, Université PSL, Sorbonne Université, Université de Paris, Paris, France
| | | | - Jean-François Allemand
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France; Laboratoire de Physique de L'Ecole Normale Supérieure de Paris, CNRS, ENS, Université PSL, Sorbonne Université, Université de Paris, Paris, France
| | - Vincent Croquette
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France; Laboratoire de Physique de L'Ecole Normale Supérieure de Paris, CNRS, ENS, Université PSL, Sorbonne Université, Université de Paris, Paris, France; ESPCI Paris, Université PSL, Paris, France.
| | - Hervé Le Hir
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France.
| |
Collapse
|
5
|
Hausmann S, Geiser J, Valentini M. Mechanism of inhibition of bacterial RNA helicases by diazo dyes and implications for antimicrobial drug development. Biochem Pharmacol 2022; 204:115194. [DOI: 10.1016/j.bcp.2022.115194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
|
6
|
Hausmann S, Gonzalez D, Geiser J, Valentini M. The DEAD-box RNA helicase RhlE2 is a global regulator of Pseudomonas aeruginosa lifestyle and pathogenesis. Nucleic Acids Res 2021; 49:6925-6940. [PMID: 34151378 PMCID: PMC8266600 DOI: 10.1093/nar/gkab503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
RNA helicases perform essential housekeeping and regulatory functions in all domains of life by binding and unwinding RNA molecules. The bacterial RhlE-like DEAD-box RNA helicases are among the least well studied of these enzymes. They are widespread especially among Proteobacteria, whose genomes often encode multiple homologs. The significance of the expansion and diversification of RhlE-like proteins for bacterial fitness has not yet been established. Here, we study the two RhlE homologs present in the opportunistic pathogen Pseudomonas aeruginosa. We show that, in the course of evolution, RhlE1 and RhlE2 have diverged in their biological functions, molecular partners and RNA-dependent enzymatic activities. Whereas RhlE1 is mainly needed for growth in the cold, RhlE2 also acts as global post-transcriptional regulator, affecting the level of hundreds of cellular transcripts indispensable for both environmental adaptation and virulence. The global impact of RhlE2 is mediated by its unique C-terminal extension, which supports the RNA unwinding activity of the N-terminal domain as well as an RNA-dependent interaction with the RNase E endonuclease and the cellular RNA degradation machinery. Overall, our work reveals how the functional and molecular divergence between two homologous RNA helicases can contribute to bacterial fitness and pathogenesis.
Collapse
Affiliation(s)
- Stéphane Hausmann
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Diego Gonzalez
- Laboratory of Microbiology, Institute of Biology, Faculty of Sciences, University of Neuchâtel, Neuchâtel, Switzerland
| | - Johan Geiser
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Martina Valentini
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Mokdadi M, Abdelkrim YZ, Banroques J, Huvelle E, Oualha R, Yeter-Alat H, Guizani I, Barhoumi M, Tanner NK. The In Silico Identification of Potential Members of the Ded1/DDX3 Subfamily of DEAD-Box RNA Helicases from the Protozoan Parasite Leishmania infantum and Their Analyses in Yeast. Genes (Basel) 2021; 12:212. [PMID: 33535521 PMCID: PMC7912733 DOI: 10.3390/genes12020212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
DEAD-box RNA helicases are ubiquitous proteins found in all kingdoms of life and that are associated with all processes involving RNA. Their central roles in biology make these proteins potential targets for therapeutic or prophylactic drugs. The Ded1/DDX3 subfamily of DEAD-box proteins is of particular interest because of their important role(s) in translation. In this paper, we identified and aligned the protein sequences of 28 different DEAD-box proteins from the kinetoplast-protozoan parasite Leishmania infantum, which is the cause of the visceral form of leishmaniasis that is often lethal if left untreated, and compared them with the consensus sequence derived from DEAD-box proteins in general, and from the Ded1/DDX3 subfamily in particular, from a wide variety of other organisms. We identified three potential homologs of the Ded1/DDX3 subfamily and the equivalent proteins from the related protozoan parasite Trypanosoma brucei, which is the causative agent of sleeping sickness. We subsequently tested these proteins for their ability to complement a yeast strain deleted for the essential DED1 gene. We found that the DEAD-box proteins from Trypanosomatids are highly divergent from other eukaryotes, and consequently they are suitable targets for protein-specific drugs.
Collapse
Affiliation(s)
- Molka Mokdadi
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France; (M.M.); (Y.Z.A.); (J.B.); (E.H.); (H.Y.-A.)
- PSL Research University, 75005 Paris, France
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74 Tunis-Belvédère 1002, Tunisia; (R.O.); (I.G.)
- Institut National des Sciences Appliquées et Technologies, Université de Carthage, CEDEX, Tunis 1080, Tunisia
| | - Yosser Zina Abdelkrim
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France; (M.M.); (Y.Z.A.); (J.B.); (E.H.); (H.Y.-A.)
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74 Tunis-Belvédère 1002, Tunisia; (R.O.); (I.G.)
| | - Josette Banroques
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France; (M.M.); (Y.Z.A.); (J.B.); (E.H.); (H.Y.-A.)
- PSL Research University, 75005 Paris, France
| | - Emmeline Huvelle
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France; (M.M.); (Y.Z.A.); (J.B.); (E.H.); (H.Y.-A.)
- PSL Research University, 75005 Paris, France
| | - Rafeh Oualha
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74 Tunis-Belvédère 1002, Tunisia; (R.O.); (I.G.)
| | - Hilal Yeter-Alat
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France; (M.M.); (Y.Z.A.); (J.B.); (E.H.); (H.Y.-A.)
- PSL Research University, 75005 Paris, France
| | - Ikram Guizani
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74 Tunis-Belvédère 1002, Tunisia; (R.O.); (I.G.)
| | - Mourad Barhoumi
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74 Tunis-Belvédère 1002, Tunisia; (R.O.); (I.G.)
| | - N. Kyle Tanner
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France; (M.M.); (Y.Z.A.); (J.B.); (E.H.); (H.Y.-A.)
- PSL Research University, 75005 Paris, France
| |
Collapse
|