1
|
Zhang WL, Yu LP, Zhou W, Wang X, Du J. Exploring the oral bacteria-oral lichen planus connection: mechanisms, clinical implications and future directions. Arch Microbiol 2025; 207:143. [PMID: 40353891 DOI: 10.1007/s00203-025-04342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/15/2025] [Accepted: 04/25/2025] [Indexed: 05/14/2025]
Abstract
Oral lichen planus (OLP) is a prevalent T-cell mediated inflammatory-immune disease with uncertain etiology. Recently, there is emerging evidence suggesting that oral bacteria may exert a prominent role in the onset and development of OLP. They might promote the initiation and progression of OLP by disrupting the oral epithelia, invading the lamina propria, stimulating pro-inflammatory cytokines production and inducing immune dysfunction. In this review, we will focus on the possible mechanisms of oral bacteria contributing to occurrence and development of OLP, and provide new insights into the bacteria-related diagnosis, prevention and treatment strategies for OLP.
Collapse
Affiliation(s)
- Wei-Long Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Lian-Pin Yu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wei Zhou
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xue Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Juan Du
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
2
|
Feng Y, Liu M, Liu Y, Li H. Invasion of human dental pulp fibroblasts by Porphyromonas gingivalis leads to autophagy via the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin signaling pathway. J Oral Biosci 2024; 66:10-18. [PMID: 39179205 DOI: 10.1016/j.job.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
OBJECTIVES Porphyromonas gingivalis is a pathogenic bacterium that causes periodontitis and dental pulp infection. Autophagy is a potential mechanism involved in inflammatory disease. This study established an in vitro model of P. gingivalis intracellular infection in human dental pulp fibroblasts (HDPFs) to investigate the effects of live P. gingivalis on HDPFs. METHODS Morphological and quantification techniques such as fluorescence microscopy, transmission electron microscopy (TEM), indirect immunofluorescence analysis, enzyme-linked immunosorbent assay (ELISA), real-time polymerase chain reaction (PCR), and western blotting were used in this study. RESULTS After cell invasion, P. gingivalis is mainly localized in the cytoplasm and lysosomes. Additionally, P. gingivalis activates autophagy in HDPFs by upregulating the expression of autophagy-related gene Beclin-1, activate autophagy-related gene12 (ATG12), and microtubule-associated protein light chain 3 (LC3). Furthermore, the invasion of P. gingivalis leads to increased phosphorylation of PI3K, Akt, and mTOR with the addition of rapamycin, whereas the addition of wortmannin decreased phosphorylation. This invasion of P. gingivalis, also causes an inflammatory response, leading to the upregulation of IL-1β, IL-6, and TNF-α. Rapamycin helps decrease levels of pro-inflammatory cytokines, but the addition of wortmannin increases them. These results show that the invasion of P. gingivalis can cause excessive inflammation and promote the autophagy of HDPFs, which is regulated by PI3K/Akt/mTOR. CONCLUSIONS P. gingivalis escapes the immune system by inducing autophagy in the host cells, causing excessive inflammation. P. gingivalis regulates autophagy in HDPFs through the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway.
Collapse
Affiliation(s)
- Ying Feng
- Department of General Dentistry and Emergency Dental Care, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Mingxiang Liu
- Department of Endodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Hong Li
- Department of Endodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
3
|
Tanigaki K, Matsumura R, Sasaki N, Kato Y, Tamamori T, Yamaga S, Nakamura E, Sakanaka A, Kuboniwa M, Matsusaki M, Amano A, Takeuchi H. SLC37A4, gene responsible for glycogen storage disease type 1b, regulates gingival epithelial barrier function via JAM1 expression. Sci Rep 2024; 14:24797. [PMID: 39433915 PMCID: PMC11494063 DOI: 10.1038/s41598-024-75524-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
Solute carrier family 37 member 4 (SLC37A4) is known to regulate glucose-6-phosphate transport from cytoplasm to the lumen of the endoplasmic reticulum, which serves to maintain glucose homeostasis. Glycogen storage disease type 1b (GSD1b) is caused by a mutation of SLC37A4, leading to a glycogenolysis defect. Although GSD1b cases are known to be complicated by periodontitis, the etiological molecular basis remains unclear. The present study investigated the effects of SLC37A4 on gingival barrier function. Examinations of immortalized human gingival epithelial (IHGE) cells showed SLC37A4 localized in the endoplasmic reticulum. SLC37A4 knockout decreased expression of JAM1, a tight junction-related protein, in IHGE cells. Using in silico analysis to investigate potential transcription factor binding sites, H6 family homeobox 3 (HMX3) was shown to be related to JAM1 expression. In HMX3-knockdown IHGE cells, JAM1 expression was markedly suppressed. Furthermore, HMX3 was scarcely detected in SLC37A4-knockout cells, while HMX3 overexpression restored JAM1 expression in those cells. Finally, using a three-dimensional multilayered gingival epithelial tissue model, knockout of SLC37A4 was also found to increase permeability to lipopolysaccharide and peptidoglycan, which was dependent on JAM1 expression. Specific downregulation of HMX3 by SLC37A4 and the consequent decrease in JAM1 expression provides findings indicating a molecular basis for the reduction in barrier function of gingival epithelial tissues in GSD1b cases.
Collapse
Affiliation(s)
- Keita Tanigaki
- Department of Preventive Dentistry, Osaka University Dental Hospital, Suita, Osaka, 565-0871, Japan
| | - Risako Matsumura
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Naoko Sasaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuta Kato
- Department of Preventive Dentistry, Osaka University Dental Hospital, Suita, Osaka, 565-0871, Japan
| | - Tsukasa Tamamori
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shunsuke Yamaga
- Department of Preventive Dentistry, Osaka University Dental Hospital, Suita, Osaka, 565-0871, Japan
| | - Eriko Nakamura
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Akito Sakanaka
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masae Kuboniwa
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hiroki Takeuchi
- Department of Preventive Dentistry, Osaka University Dental Hospital, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
4
|
Xie S, Iberi V, Boissy Y, Tansky CS, Huggins T, Ramji N, Biesbrock AR. Stannous fluoride forms aggregates between outer and inner membranes leading to membrane rupture of Porphyromonas gingivalis and Prevotella pallens. FRONTIERS IN ORAL HEALTH 2024; 5:1427008. [PMID: 38989256 PMCID: PMC11233731 DOI: 10.3389/froh.2024.1427008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Objective Stannous has been shown to bind to free lipopolysaccharides, thus preventing them from binding to TLR receptors. This study was undertaken to determine the histomorphological mechanism of stannous binding to anaerobic bacteria. Methods Two bacteria associated with gingivitis and advanced periodontal disease, Porphyromonas gingivalis (P. gingivalis) and Prevotella pallens (P. pallens), were cultured in 25-1,000 μM of stannous fluoride and stannous chloride for 48 h. The growth rate was estimated using absorbance OD600. Bacterial cells were then fixed and processed for transmission electron microscopy (TEM) analysis. Results Stannous fluoride inhibited proliferation of both P. gingivalis and P. pallens in a dose-dependent manner. There was a statistically significant suppression of the growth curve starting at 100 μM for P. pallens (P = 0.050) and 200 μM for P. gingivalis (P = 0.039). TEM analysis revealed a thick layer of polysaccharides (19.8 nm) in P. gingivalis. The outer and inner membranes were clearly visible with low electron densities in both bacteria. Stannous diffused into bacterial membranes and formed precipitates in the areas spanning outer and inner membranes and below inner membranes. Precipitates varied in size ranging from 46.4 to 84.5 nm in length, and 18.4 to 35.9 nm in width. The membranes were disintegrated in the region where stannous formed precipitates. Cytosolic contents were leaked out, and in several cases, small vesicles were formed. Stannous precipitates were more abundant in numbers and larger in size in bacteria treated with high concentrations (100-300 μM) than in low concentrations (25-50 μM) of stannous fluoride. Furthermore, most of the bacteria were disintegrated in the groups treated with 100-300 μM stannous fluoride. At low concentrations (25 μM), stannous fluoride formed complexes primarily around outer membranes, to which lipopolysaccharides are anchored. Stannous chloride results showed similar trends, but it was less potent than stannous fluoride. Conclusion Stannous fluoride can penetrate bacteria, bind to the constituents of the membrane and form precipitates between outer and inner membranes and beneath inner membranes. These large precipitates damaged the integrity of membranes and allowed cytosolic contents to be leaked out. Stannous complexes formed at the outer membranes, even at low concentrations (25 μM).
Collapse
Affiliation(s)
- Sancai Xie
- Discovery & Innovation Platforms, The Procter & Gamble Company, Mason, OH, United States
| | - Vighter Iberi
- Discovery & Innovation Platforms, The Procter & Gamble Company, Mason, OH, United States
| | - Ying Boissy
- Discovery & Innovation Platforms, The Procter & Gamble Company, Mason, OH, United States
| | - Cheryl S Tansky
- Discovery & Innovation Platforms, The Procter & Gamble Company, Mason, OH, United States
| | - Tom Huggins
- Discovery & Innovation Platforms, The Procter & Gamble Company, Mason, OH, United States
| | - Niranjan Ramji
- Global Oral Care R&D, The Procter & Gamble Company, Mason, OH, United States
| | - Aaron R Biesbrock
- Global Oral Care R&D, The Procter & Gamble Company, Mason, OH, United States
| |
Collapse
|
5
|
Muñoz-Medel M, Pinto MP, Goralsky L, Cáceres M, Villarroel-Espíndola F, Manque P, Pinto A, Garcia-Bloj B, de Mayo T, Godoy JA, Garrido M, Retamal IN. Porphyromonas gingivalis, a bridge between oral health and immune evasion in gastric cancer. Front Oncol 2024; 14:1403089. [PMID: 38807771 PMCID: PMC11130407 DOI: 10.3389/fonc.2024.1403089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a gram-negative oral pathogen associated with chronic periodontitis. Previous studies have linked poor oral health and periodontitis with oral cancer. Severe cases of periodontal disease can result in advanced periodontitis, leading to tissue degradation, tooth loss, and may also correlate with higher gastric cancer (GC) risk. In fact, tooth loss is associated with an elevated risk of cancer. However, the clinical evidence for this association remains inconclusive. Periodontitis is also characterized by chronic inflammation and upregulation of members of the Programmed Death 1/PD1 Ligand 1 (PD1/PDL1) axis that leads to an immunosuppressive state. Given that chronic inflammation and immunosuppression are conditions that facilitate cancer progression and carcinogenesis, we hypothesize that oral P. gingivalis and/or its virulence factors serve as a mechanistic link between oral health and gastric carcinogenesis/GC progression. We also discuss the potential impact of P. gingivalis' virulence factors (gingipains, lipopolysaccharide (LPS), and fimbriae) on inflammation and the response to immune checkpoint inhibitors in GC which are part of the current standard of care for advanced stage patients.
Collapse
Affiliation(s)
- Matías Muñoz-Medel
- Precision Oncology Center, School of Medicine, Faculty of Medicine and Health Sciences, Universidad Mayor, Santiago, Chile
| | - Mauricio P. Pinto
- Support Team for Oncological Research and Medicine (STORM), Santiago, Chile
| | - Lauren Goralsky
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Mónica Cáceres
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Patricio Manque
- Precision Oncology Center, School of Medicine, Faculty of Medicine and Health Sciences, Universidad Mayor, Santiago, Chile
| | - Andrés Pinto
- Department of Oral and Maxillofacial Medicine and Diagnostic Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, OH, United States
| | - Benjamin Garcia-Bloj
- Precision Oncology Center, School of Medicine, Faculty of Medicine and Health Sciences, Universidad Mayor, Santiago, Chile
| | - Tomas de Mayo
- Precision Oncology Center, School of Medicine, Faculty of Medicine and Health Sciences, Universidad Mayor, Santiago, Chile
| | - Juan A. Godoy
- Precision Oncology Center, School of Medicine, Faculty of Medicine and Health Sciences, Universidad Mayor, Santiago, Chile
| | - Marcelo Garrido
- Precision Oncology Center, School of Medicine, Faculty of Medicine and Health Sciences, Universidad Mayor, Santiago, Chile
| | - Ignacio N. Retamal
- Precision Oncology Center, School of Medicine, Faculty of Medicine and Health Sciences, Universidad Mayor, Santiago, Chile
| |
Collapse
|
6
|
Irfan M, Solbiati J, Duran-Pinedo A, Rocha FG, Gibson FC, Frias-Lopez J. A Porphyromonas gingivalis hypothetical protein controlled by the type I-C CRISPR-Cas system is a novel adhesin important in virulence. mSystems 2024; 9:e0123123. [PMID: 38323815 PMCID: PMC10949514 DOI: 10.1128/msystems.01231-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/26/2023] [Indexed: 02/08/2024] Open
Abstract
The ability of many human pathogens to infect requires their ability to adhere to the host surfaces as a first step in the process. Porphyromonas gingivalis, a keystone oral pathogen, uses adhesins to adhere to the surface of the gingival epithelium and other members of the oral microbiome. In a previous study, we identified several proteins potentially linked to virulence whose mRNA levels are regulated by CRISPR-Cas type I-C. Among those, PGN_1547 was highly upregulated in the CRISPR-Cas 3 mutant. PGN_1547 is annotated as a hypothetical protein. Employing homology searching, our data support that PGN_1547 resembles an auto-transporter adhesin of P. gingivalis based on containing the DUF2807 domain. To begin to characterize the function of PGN_1547, we found that a deletion mutant displayed a significant decrease in virulence using a Galleria mellonela model. Furthermore, this mutant was significantly impaired in forming biofilms and attaching to the macrophage-like cell THP-1. Luminex revealed that the PGN_1547 mutant elicited a less robust cytokine and chemokine response from THP-1 cells, and TLR2 predominantly sensed that recombinant PGN_1547. Taken together, these findings broaden our understanding of the toolbox of virulence factors possessed by P. gingivalis. Importantly, PGN_1547, a hypothetical protein, has homologs in another member of the order Bacteroidales whose function is unknown, and our results could shed light on the role of this family of proteins as auto-transport adhesins in this phylogenetic group.IMPORTANCEPeriodontal diseases are among humans' most common infections, and besides their effect on the oral cavity, they have been associated with systemic inflammatory conditions. Among members of the oral microbiome implicated in the development of periodontitis, Porphyromonas gingivalis is considered a keystone pathogen. We have identified a new adhesin that acts as a virulence factor, PGN_1547, which contains the DUF2807 domain, which belongs to the putative auto-transporter adhesin, head GIN domain family. Deletion of this gene lowers the virulence of P. gingivalis and impacts the ability of P. gingivalis to form biofilm and attach to host cells. Furthermore, the broad distribution of these receptors in the order Bacteroidales suggests their importance in colonization by this important group of organisms.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Jose Solbiati
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Ana Duran-Pinedo
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Fernanda Godoy Rocha
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Frank C. Gibson
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Jorge Frias-Lopez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Jiao P, Li Z, Li B, Jiao X. The Role of Caspase-11 and Pyroptosis in the Regulation of Inflammation in Peri-Implantitis. J Inflamm Res 2023; 16:4471-4479. [PMID: 37842190 PMCID: PMC10576458 DOI: 10.2147/jir.s427523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
Peri-implantitis is an important cause of oral implant failure. In the past, TLR4 and TLR2 in the Toll-like family were generally considered as the key immune recognition receptors regulating peri-implantitis. However, under the guidance of this theory, there are still some unexplainable peri-implantitis symptoms. With the discovery of novel intracellular LPS receptor Caspase-11, a new understanding of inflammatory signaling and immune regulation in the development of peri-implantitis has been gained. However, the regulatory role of Caspase-11 in peri-implantitis and its crosstalk with the TLR4 pathway remain unclear. The therapeutic effect of drugs targeting Caspase-11 on peri-implantitis is still in its early stages. In view of this situation, this paper reviews the possible role of Caspase-11 in peri-implant inflammation, elaborated the entry process of LPS and the activation mechanism of Caspase-11, and analyzes the differences in Caspase-11 between commonly studied animals, mice and humans. The current research hotspots and challenges are also analyzed to provide new insights and ideas for researchers.
Collapse
Affiliation(s)
- Pengcheng Jiao
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Zuntai Li
- Hospital of Stomatology, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Birong Li
- Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu, People’s Republic of China
| | - Xingyuan Jiao
- Department of Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
8
|
Harris DM, Sulewski JG. Photoinactivation and Photoablation of Porphyromonas gingivalis. Pathogens 2023; 12:1160. [PMID: 37764967 PMCID: PMC10535405 DOI: 10.3390/pathogens12091160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Several types of phototherapy target human pathogens and Porphyromonas gingivitis (Pg) in particular. The various approaches can be organized into five different treatment modes sorted by different power densities, interaction times, effective wavelengths and mechanisms of action. Mode 1: antimicrobial ultraviolet (aUV); mode 2: antimicrobial blue light (aBL); mode 3: antimicrobial selective photothermolysis (aSP); mode 4: antimicrobial vaporization; mode 5: antimicrobial photodynamic therapy (aPDT). This report reviews the literature to identify for each mode (a) the putative molecular mechanism of action; (b) the effective wavelength range and penetration depth; (c) selectivity; (d) in vitro outcomes; and (e) clinical trial/study outcomes as these elements apply to Porphyromonas gingivalis (Pg). The characteristics of each mode influence how each is translated into the clinic.
Collapse
Affiliation(s)
- David M. Harris
- Bio-Medical Consultants, Inc., Canandaigua, NY 14424, USA
- Department of Periodontics, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - John G. Sulewski
- Institute for Advanced Dental Technologies, Huntington Woods, MI 48070, USA
- Millennium Dental Technologies, Inc., Cerritos, CA 90703, USA
| |
Collapse
|
9
|
Ren L, Shen D, Liu C, Ding Y. Protein Tyrosine and Serine/Threonine Phosphorylation in Oral Bacterial Dysbiosis and Bacteria-Host Interaction. Front Cell Infect Microbiol 2022; 11:814659. [PMID: 35087767 PMCID: PMC8787120 DOI: 10.3389/fcimb.2021.814659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/13/2021] [Indexed: 02/05/2023] Open
Abstract
The human oral cavity harbors approximately 1,000 microbial species, and dysbiosis of the microflora and imbalanced microbiota-host interactions drive many oral diseases, such as dental caries and periodontal disease. Oral microbiota homeostasis is critical for systemic health. Over the last two decades, bacterial protein phosphorylation systems have been extensively studied, providing mounting evidence of the pivotal role of tyrosine and serine/threonine phosphorylation in oral bacterial dysbiosis and bacteria-host interactions. Ongoing investigations aim to discover novel kinases and phosphatases and to understand the mechanism by which these phosphorylation events regulate the pathogenicity of oral bacteria. Here, we summarize the structures of bacterial tyrosine and serine/threonine kinases and phosphatases and discuss the roles of tyrosine and serine/threonine phosphorylation systems in Porphyromonas gingivalis and Streptococcus mutans, emphasizing their involvement in bacterial metabolism and virulence, community development, and bacteria-host interactions.
Collapse
Affiliation(s)
- Liang Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Daonan Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Lang KN, Sculean A, Eick S, Stähli A. A novel in vitro periodontal pocket model to evaluate the effect of root surface instrumentation on biofilm-epithelial cell interactions. Clin Oral Investig 2022; 26:4021-4029. [PMID: 35048191 PMCID: PMC9072513 DOI: 10.1007/s00784-022-04371-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/02/2022] [Indexed: 12/13/2022]
Abstract
Abstract
Objective
To develop a novel in vitro periodontal pocket model for evaluating the effect of two different root surface instrumentation modalities on biofilm-epithelial cell interactions.
Materials and methods
An artificial periodontal pocket model was created using an impression material. Dentin discs were prepared and incubated for 3.5 days with a biofilm consisting of 12 bacterial strains. Then, the discs were inserted into the pocket model and instrumented for 10 s or 10 strokes either with ultrasonics (US) or hand instruments (HI). Subsequently, a glass slide coated with epithelial cells was placed in close vicinity to the discs. After incubation of the pocket model in a 5% CO2 atmosphere for 6 h, residual bacteria of the biofilm as well as bacteria adhering to or invaded into epithelial cells were determined using colony-forming unit (cfu) counts and real-time PCR. Further, as a parameter of the pro-inflammatory cell response, interleukin (IL)-8 expression was determined by ELISA.
Results
Compared to untreated control, HI reduced the cfu counts by 0.63 log10 (not significant) and US by 1.78 log10 (p = 0.005) with a significant difference between the treatment modalities favoring US (p = 0.048). By trend, lower detection levels of Tannerella forsythia were detected in the US group compared to HI. Concerning the interaction with epithelial cells, half of the control and the HI samples showed epithelial cells with attaching or invading bacteria, while US displayed bacteria only in two out of eight samples. In addition, US resulted in significantly lower IL-8 secretion by epithelial cells compared to the untreated control. Between HI and controls, no statistically significant difference in IL-8 secretion was found.
Conclusion
This newly developed in vitro model revealed in terms of biofilm-epithelial cell interaction after root surface instrumentation that compared to hand curettes, ultrasonic instrumentation appeared to be more effective in removing bacterial biofilm and in decreasing the inflammatory response of epithelium to biofilm.
Clinical relevance
Ultrasonic instrumentation might be more advantageous to reduce cellular inflammatory response than hand instruments.
Collapse
Affiliation(s)
- Kiri N. Lang
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| |
Collapse
|