1
|
Nicolas WJ, Gillman C, Weaver SJ, Clabbers MTB, Shiriaeva A, Her AS, Martynowycz MW, Gonen T. Comprehensive microcrystal electron diffraction sample preparation for cryo-EM. Nat Protoc 2025; 20:1275-1309. [PMID: 39706914 DOI: 10.1038/s41596-024-01088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/09/2024] [Indexed: 12/23/2024]
Abstract
Microcrystal electron diffraction (MicroED) has advanced structural methods across a range of sample types, from small molecules to proteins. This cryogenic electron microscopy (cryo-EM) technique involves the continuous rotation of small 3D crystals in the electron beam, while a high-speed camera captures diffraction data in the form of a movie. The crystal structure is subsequently determined by using established X-ray crystallographic software. MicroED is a technique still under development, and hands-on expertise in sample preparation, data acquisition and processing is not always readily accessible. This comprehensive guide on MicroED sample preparation addresses commonly used methods for various sample categories, including room temperature solid-state small molecules and soluble and membrane protein crystals. Beyond detailing the steps of sample preparation for new users, and because every crystal requires unique growth and sample-preparation conditions, this resource provides instructions and optimization strategies for MicroED sample preparation. The protocol is suitable for users with expertise in biochemistry, crystallography, general cryo-EM and crystallography data processing. MicroED experiments, from sample vitrification to final structure, can take anywhere from one workday to multiple weeks, especially when cryogenic focused ion beam milling is involved.
Collapse
Affiliation(s)
- William J Nicolas
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Cody Gillman
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Sara J Weaver
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Max T B Clabbers
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Anna Shiriaeva
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Ampon Sae Her
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael W Martynowycz
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Tamir Gonen
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Department of Physiology, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Ruma YN, Nannenga BL, Gonen T. Unraveling atomic complexity from frozen samples. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2025; 12:020901. [PMID: 40255534 PMCID: PMC12009148 DOI: 10.1063/4.0000303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025]
Abstract
Cryo-electron microscopy (cryo-EM) is a significant driver of recent advances in structural biology. Cryo-EM is comprised of several distinct and complementary methods, which include single particle analysis, cryo-electron tomography, and microcrystal electron diffraction. In this Perspective, we will briefly discuss the different branches of cryo-EM in structural biology and the current challenges in these areas.
Collapse
Affiliation(s)
| | | | - Tamir Gonen
- Author to whom correspondence should be addressed:
| |
Collapse
|
3
|
Haymaker A, Nannenga BL. Advances and applications of microcrystal electron diffraction (MicroED). Curr Opin Struct Biol 2024; 84:102741. [PMID: 38086321 PMCID: PMC10882645 DOI: 10.1016/j.sbi.2023.102741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 02/08/2024]
Abstract
Microcrystal electron diffraction, commonly referred to as MicroED, has become a powerful tool for high-resolution structure determination. The method makes use of cryogenic transmission electron microscopes to collect electron diffraction data from crystals that are several orders of magnitude smaller than those used by other conventional diffraction techniques. MicroED has been used on a variety of samples including soluble proteins, membrane proteins, small organic molecules, and materials. Here we will review the MicroED method and highlight recent advancements to the methodology, as well as describe applications of MicroED within the fields of structural biology and chemical crystallography.
Collapse
Affiliation(s)
- Alison Haymaker
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Brent L Nannenga
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
4
|
Ruma YN, Bu G, Gonen T. MicroED structure of the C11 cysteine protease Clostripain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574240. [PMID: 38260293 PMCID: PMC10802345 DOI: 10.1101/2024.01.04.574240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Clostripain secreted from Clostridium histolyticum is the founding member of the C11 family of Clan CD cysteine peptidases, which is an important group of peptidases secreted by numerous bacteria. Clostripain is an arginine specific endopeptidase. Because of its efficacy as a cysteine peptidase, it is widely used in laboratory settings. Despite its importance the structure of clostripain remains unsolved. Here we describe the first structure of an active form of C. histolyticum Clostripain determined at 3.6 Å resolution using microcrystal electron diffraction (MicroED). The structure was determined from a single nanocrystal after focused ion beam milling. The structure of Clostripain shows a typical Clan CD α/β/α sandwich architecture and the Cys231/His176 catalytic dyad in the active site. It has a large electronegative substrate binding pocket showing its ability to accommodate large and diverse substrates. A loop in the heavy chain formed between residues 452 to 457 is potentially important for substrate binding. In conclusion, this result demonstrates the importance of MicroED to determine the unknown structure of macromolecules such as Clostripain, which can be further used as a platform to study substrate binding and design of potential inhibitors against this class of peptidases.
Collapse
|
5
|
Haymaker A, Bardin AA, Gonen T, Martynowycz MW, Nannenga BL. Structure determination of a DNA crystal by MicroED. Structure 2023; 31:1499-1503.e2. [PMID: 37541248 PMCID: PMC10805983 DOI: 10.1016/j.str.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 08/06/2023]
Abstract
Microcrystal electron diffraction (MicroED) is a powerful tool for determining high-resolution structures of microcrystals from a diverse array of biomolecular, chemical, and material samples. In this study, we apply MicroED to DNA crystals, which have not been previously analyzed using this technique. We utilized the d(CGCGCG)2 DNA duplex as a model sample and employed cryo-FIB milling to create thin lamella for diffraction data collection. The MicroED data collection and subsequent processing resulted in a 1.10 Å resolution structure of the d(CGCGCG)2 DNA, demonstrating the successful application of cryo-FIB milling and MicroED to the investigation of nucleic acid crystals.
Collapse
Affiliation(s)
- Alison Haymaker
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Andrey A Bardin
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Tamir Gonen
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael W Martynowycz
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Brent L Nannenga
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
6
|
Haymaker A, Bardin AA, Gonen T, Martynowycz MW, Nannenga BL. Structure determination of a DNA crystal by MicroED. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538338. [PMID: 37163108 PMCID: PMC10168392 DOI: 10.1101/2023.04.25.538338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Microcrystal electron diffraction (MicroED) is a powerful tool for determining high-resolution structures of microcrystals from a diverse array of biomolecular, chemical, and material samples. In this study, we apply MicroED to DNA crystals, which have not been previously analyzed using this technique. We utilized the d(CGCGCG) 2 DNA duplex as a model sample and employed cryo-FIB milling to create thin lamella for diffraction data collection. The MicroED data collection and subsequent processing resulted in a 1.10 Å resolution structure of the d(CGCGCG) 2 DNA, demonstrating the successful application of cryo-FIB milling and MicroED to the investigation of nucleic acid crystals.
Collapse
|
7
|
Clark LJ, Bu G, Nannenga BL, Gonen T. MicroED for the study of protein–ligand interactions and the potential for drug discovery. Nat Rev Chem 2021; 5:853-858. [PMID: 37117388 DOI: 10.1038/s41570-021-00332-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 12/18/2022]
Abstract
Microcrystal electron diffraction (MicroED) is an electron cryo-microscopy (cryo-EM) technique used to determine molecular structures with crystals that are a millionth the size needed for traditional single-crystal X-ray crystallography. An exciting use of MicroED is in drug discovery and development, where it can be applied to the study of proteins and small molecule interactions, and for structure determination of natural products. The structures are then used for rational drug design and optimization. In this Perspective, we discuss the current applications of MicroED for structure determination of protein-ligand complexes and potential future applications in drug discovery.
Collapse
|
8
|
Ghosh R, Bu G, Nannenga BL, Sumner LW. Recent Developments Toward Integrated Metabolomics Technologies (UHPLC-MS-SPE-NMR and MicroED) for Higher-Throughput Confident Metabolite Identifications. Front Mol Biosci 2021; 8:720955. [PMID: 34540897 PMCID: PMC8445028 DOI: 10.3389/fmolb.2021.720955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/17/2021] [Indexed: 02/03/2023] Open
Abstract
Metabolomics has emerged as a powerful discipline to study complex biological systems from a small molecule perspective. The success of metabolomics hinges upon reliable annotations of spectral features obtained from MS and/or NMR. In spite of tremendous progress with regards to analytical instrumentation and computational tools, < 20% of spectral features are confidently identified in most untargeted metabolomics experiments. This article explores the integration of multiple analytical instruments such as UHPLC-MS/MS-SPE-NMR and the cryo-EM method MicroED to achieve large-scale and confident metabolite identifications in a higher-throughput manner. UHPLC-MS/MS-SPE allows for the simultaneous automated purification of metabolites followed by offline structure elucidation and structure validation by NMR and MicroED. Large-scale study of complex metabolomes such as that of the model plant legume Medicago truncatula can be achieved using an integrated UHPLC-MS/MS-SPE-NMR metabolomics platform. Additionally, recent developments in MicroED to study structures of small organic molecules have enabled faster, easier and precise structure determinations of metabolites. A MicroED small molecule structure elucidation workflow (e.g., crystal screening, sample preparation, data collection and data processing/structure determination) has been described. Ongoing MicroED methods development and its future scope related to structure elucidation of specialized metabolites and metabolomics are highlighted. The incorporation of MicroED with a UHPLC-MS/MS-SPE-NMR instrumental ensemble offers the potential to accelerate and achieve higher rates of metabolite identification.
Collapse
Affiliation(s)
- Rajarshi Ghosh
- Division of Biochemistry, University of Missouri, Columbia, MO, United States
- MU Metabolomics Center, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, SC, United States
- Interdisciplinary Plant Group, University of Missouri, Columbia, SC, United States
| | - Guanhong Bu
- Chemical Engineering, School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Brent L. Nannenga
- Chemical Engineering, School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Lloyd W. Sumner
- Division of Biochemistry, University of Missouri, Columbia, MO, United States
- MU Metabolomics Center, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, SC, United States
- Interdisciplinary Plant Group, University of Missouri, Columbia, SC, United States
| |
Collapse
|