1
|
Garg V, Möbius W, Heinrich R, Ruhwedel T, Perera RP, Scholz P, Ischebeck T, Salinas G, Dullin C, Göpfert MC, Engelmann J, Dosch R, Geurten BRH. Patient-specific mutation of contact site protein Tomm70 causes neurodegeneration. Dis Model Mech 2025; 18:dmm052029. [PMID: 40151845 PMCID: PMC12067081 DOI: 10.1242/dmm.052029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
TOMM70 is a receptor at the contact site between mitochondria and the endoplasmic reticulum, and TOMM70 has been identified as a risk gene for hereditary spastic paraplegia. Furthermore, de novo missense variants of TOMM70 have been identified to cause neurological impairments in two unrelated patients. Here, we show that mutant zebrafish ruehreip25ca also harbour a missense mutation in tomm70, affecting the same conserved isoleucine residue as in one of the human patients. Using this model, we demonstrate how loss of Tomm70 function leads to impairment. At the molecular level, the mutation affected the interaction of Tomm70 with the endoplasmic reticulum protein Lam6, a known sterol transporter. At the neuronal level, the mutation impaired mitochondrial transport to the axons and dendrites, leading to demyelination of large calibre axons in the spinal cord. These neurodegenerative defects in zebrafish were associated with reduced endurance and swimming efficiency, and alterations in the C-start escape response, which correlated with decreased spiking in giant Mauthner neurons. Thus, in zebrafish, a mutation in the endoplasmic reticulum-mitochondria contact site protein Tomm70 recreates some of the neurodegenerative phenotypes characteristic of hereditary spastic paraplegia.
Collapse
Affiliation(s)
- Vranda Garg
- Department of Cellular Neurobiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| | - Ralf Heinrich
- Department of Cellular Neurobiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| | | | - Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Gottingen Center for Molecular Biosciences (GZMB) Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Gottingen Center for Molecular Biosciences (GZMB) Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Gabriela Salinas
- Institute of Human Genetics, University Medical Center, Göttingen Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Christian Dullin
- Department of Diagnostic and Interventional Radiology, University Medical Center, Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany
| | - Martin C. Göpfert
- Department of Cellular Neurobiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Jacob Engelmann
- Faculty of Biology, Bielefeld University33615 Bielefeld, Germany
| | - Roland Dosch
- Institute of Human Genetics, University Medical Center, Göttingen Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Bart R. H. Geurten
- Department of Cellular Neurobiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
- Department of Zoology, University of Otago39054 Dunedin, New Zealand
| |
Collapse
|
2
|
Zheng F, Kawabe Y, Kamihira M. RNA Aptamer-Mediated Gene Activation Systems for Inducible Transgene Expression in Animal Cells. ACS Synth Biol 2024; 13:230-241. [PMID: 38073086 DOI: 10.1021/acssynbio.3c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
RNA expression analyses can be used to obtain various information from inside cells, such as physical conditions, the chemical environment, and endogenous signals. For detecting RNA, the system regulating intracellular gene expression has the potential for monitoring RNA expression levels in real time within living cells. Synthetic biology provides powerful tools for detecting and analyzing RNA inside cells. Here, we devised an RNA aptamer-mediated gene activation system, RAMGA, to induce RNA-triggered gene expression activation by employing an inducible complex formation strategy grounded in synthetic biology. This methodology connects DNA-binding domains and transactivators through target RNA using RNA-binding domains, including phage coat proteins. MS2 bacteriophage coat protein fused with a transcriptional activator and PP7 bacteriophage coat protein fused with the tetracycline repressor (tetR) can be bridged by target RNA encoding MS2 and PP7 stem-loops, resulting in transcriptional activation. We generated recombinant CHO cells containing an inducible GFP expression module governed by a minimal promoter with a tetR-responsive element. Cells carrying the trigger RNA exhibited robust reporter gene expression, whereas cells lacking it exhibited no expression. GFP expression was upregulated over 200-fold compared with that in cells without a target RNA expression vector. Moreover, this system can detect the expression of mRNA tagged with aptamer tags and modulate reporter gene expression based on the target mRNA level without affecting the expression of the original mRNA-encoding gene. The RNA-triggered gene expression systems developed in this study have potential as a new platform for establishing gene circuits, evaluating endogenous gene expression, and developing novel RNA detectors.
Collapse
Affiliation(s)
- Feiyang Zheng
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
3
|
Lv X, Jin K, Sun G, Ledesma-Amaro R, Liu L. Microscopy imaging of living cells in metabolic engineering. Trends Biotechnol 2021; 40:752-765. [PMID: 34799183 DOI: 10.1016/j.tibtech.2021.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 01/23/2023]
Abstract
Microscopy imaging of living cells is becoming a pivotal, noninvasive, and highly specific tool in metabolic engineering to visualize molecular dynamics in industrial microorganisms. This review describes the different microscopy methods, from fluorescence to super resolution, with application in microbial bioengineering. Firstly, the role and importance of microscopy imaging is analyzed in the context of strain design. Then, the advantages and disadvantages of different microscopy technologies are discussed, including confocal laser scanning microscopy (CLSM), spatial light interference microscopy (SLIM), and super-resolution microscopy, followed by their applications in synthetic biology. Finally, the future perspectives of live-cell imaging and their potential to transform microbial systems are analyzed. This review provides theoretical guidance and highlights the importance of microscopy in understanding and engineering microbial metabolism.
Collapse
Affiliation(s)
- Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Ke Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guoyun Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW72AZ, UK
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Perera RP, Shaikhqasem A, Rostam N, Dickmanns A, Ficner R, Tittmann K, Dosch R. Bucky Ball Is a Novel Zebrafish Vasa ATPase Activator. Biomolecules 2021; 11:1507. [PMID: 34680140 PMCID: PMC8533965 DOI: 10.3390/biom11101507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Many multicellular organisms specify germ cells during early embryogenesis by the inheritance of ribonucleoprotein (RNP) granules known as germplasm. However, the role of complex interactions of RNP granules during germ cell specification remains elusive. This study characterizes the interaction of RNP granules, Buc, and zebrafish Vasa (zfVasa) during germ cell specification. We identify a novel zfVasa-binding motif (Buc-VBM) in Buc and a Buc-binding motif (zfVasa-BBM) in zfVasa. Moreover, we show that Buc and zfVasa directly bind in vitro and that this interaction is independent of the RNA. Our circular dichroism spectroscopy data reveal that the intrinsically disordered Buc-VBM peptide forms alpha-helices in the presence of the solvent trifluoroethanol. Intriguingly, we further demonstrate that Buc-VBM enhances zfVasa ATPase activity, thereby annotating the first biochemical function of Buc as a zfVasa ATPase activator. Collectively, these results propose a model in which the activity of zfVasa is a central regulator of primordial germ cell (PGC) formation and is tightly controlled by the germplasm organizer Buc.
Collapse
Affiliation(s)
| | - Alaa Shaikhqasem
- Department for Molecular Structural Biology, University of Goettingen, 37077 Goettingen, Germany; (A.S.); (A.D.); (R.F.)
| | - Nadia Rostam
- Institute for Human Genetics, University of Goettingen, 37073 Goettingen, Germany;
| | - Achim Dickmanns
- Department for Molecular Structural Biology, University of Goettingen, 37077 Goettingen, Germany; (A.S.); (A.D.); (R.F.)
| | - Ralf Ficner
- Department for Molecular Structural Biology, University of Goettingen, 37077 Goettingen, Germany; (A.S.); (A.D.); (R.F.)
- deCluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (MBExC), University of Goettingen, 37073 Goettingen, Germany
| | - Kai Tittmann
- Department of Molecular Enzymology, University of Goettingen, 37077 Goettingen, Germany;
| | - Roland Dosch
- Department of Developmental Biochemistry, University of Goettingen, 37077 Goettingen, Germany;
| |
Collapse
|