1
|
Carvalho JE, Burtin M, Detournay O, Amiel AR, Röttinger E. Optimized husbandry and targeted gene-editing for the cnidarian Nematostella vectensis. Development 2025; 152:dev204387. [PMID: 39776154 DOI: 10.1242/dev.204387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025]
Abstract
Optimized laboratory conditions for research models are crucial for the success of scientific projects. This includes controlling the entire life cycle, having access to all developmental stages and maintaining stable physiological conditions. Reducing the life cycle of a research model can also enhance the access to biological material and speed up genetic tool development. Thus, we optimized the rearing conditions for the sea anemone Nematostella vectensis, a cnidarian research model, to study embryonic and post-metamorphic processes, such as regeneration. We adopted a semi-automated aquaculture system for N. vectensis and developed a dietary protocol optimized for the different life stages. Thereby, we increased spawning efficiencies, juvenile growth and survival rates, and considerably reduced the overall life cycle down to 2 months. To further improve the obtention of CRISPR-Cas9 mutants, we optimized the design of sgRNAs leading to full knockout animals in F0 polyps using a single sgRNA. Finally, we show that NHEJ-mediated transgene insertion is possible in N. vectensis. In summary, our study provides additional resources for the scientific community that uses or plans to use N. vectensis as a research model.
Collapse
Affiliation(s)
- João E Carvalho
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, 06107France
- Université Côte d'Azur, Federative Research Institute - Marine Resources (IFR MARRES), 28 Avenue de Valrose, Nice, 06103France
| | - Maxence Burtin
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, 06107France
- Université Côte d'Azur, Federative Research Institute - Marine Resources (IFR MARRES), 28 Avenue de Valrose, Nice, 06103France
| | | | - Aldine R Amiel
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, 06107France
- Université Côte d'Azur, Federative Research Institute - Marine Resources (IFR MARRES), 28 Avenue de Valrose, Nice, 06103France
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, 06107France
- Université Côte d'Azur, Federative Research Institute - Marine Resources (IFR MARRES), 28 Avenue de Valrose, Nice, 06103France
| |
Collapse
|
2
|
Su L, Li G, Chow BKC, Cardoso JCR. Neuropeptides and receptors in the cephalochordate: A crucial model for understanding the origin and evolution of vertebrate neuropeptide systems. Mol Cell Endocrinol 2024; 592:112324. [PMID: 38944371 DOI: 10.1016/j.mce.2024.112324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/26/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Genomes and transcriptomes from diverse organisms are providing a wealth of data to explore the evolution and origin of neuropeptides and their receptors in metazoans. While most neuropeptide-receptor systems have been extensively studied in vertebrates, there is still a considerable lack of understanding regarding their functions in invertebrates, an extraordinarily diverse group that account for the majority of animal species on Earth. Cephalochordates, commonly known as amphioxus or lancelets, serve as the evolutionary proxy of the chordate ancestor. Their key evolutionary position, bridging the invertebrate to vertebrate transition, has been explored to uncover the origin, evolution, and function of vertebrate neuropeptide systems. Amphioxus genomes exhibit a high degree of sequence and structural conservation with vertebrates, and sequence and functional homologues of several vertebrate neuropeptide families are present in cephalochordates. This review aims to provide a comprehensively overview of the recent findings on neuropeptides and their receptors in cephalochordates, highlighting their significance as a model for understanding the complex evolution of neuropeptide signaling in vertebrates.
Collapse
Affiliation(s)
- Liuru Su
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| | - João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, 8005-139, Faro, Portugal.
| |
Collapse
|
3
|
Murillo Ramos AM, Wilson JY. Is there potential for estradiol receptor signaling in lophotrochozoans? Gen Comp Endocrinol 2024; 354:114519. [PMID: 38677339 DOI: 10.1016/j.ygcen.2024.114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024]
Abstract
Estrogen receptors (ERs) are thought to be the ancestor of all steroid receptors and are present in most lophotrochozoans studied to date, including molluscs, annelids, and rotifers. A number of studies have investigated the functional role of estrogen receptors in invertebrate species, although most are in molluscs, where the receptor is constitutively active. In vitro experiments provided evidence for ligand-activated estrogen receptors in annelids, raising important questions about the role of estrogen signalling in lophotrochozoan lineages. Here, we review the concordant and discordant evidence of estradiol receptor signalling in lophotrochozoans, with a focus on annelids and rotifers. We explore the de novo synthesis of estrogens, the evolution and expression of estrogen receptors, and physiological responses to activation of estrogen receptors in the lophotrochozoan phyla Annelida and Rotifera. Key data are missing to determine if de novo biosynthesis of estradiol in non-molluscan lophotrochozoans is likely. For example, an ortholog for the CYP11 gene is present, but confirmation of substrate conversion and measured tissue products is lacking. Orthologs CYP17 and CYP19 are lacking, yet intermediates or products (e.g. estradiol) in tissues have been measured. Estrogen receptors are present in multiple species, and for a limited number, in vitro data show agonist binding of estradiol and/or transcriptional activation. The expression patterns of the lophotrochozoan ERs suggest developmental, reproductive, and digestive roles but are highly species dependent. E2 exposures suggest that lophotrochozoan ERs may play a role in reproduction, but no strong dose-response relationship has been established. Therefore, we expect most lophotrochozoan species, outside of perhaps platyhelminths, to have an ER but their physiological role remains elusive. Mining genomes for orthologs gene families responsible for steroidogenesis, coupled with in vitro and in vivo studies of the steroid pathway are needed to better assess whether lophotrochozoans are capable of estradiol biosynthesis. One major challenge is that much of the data are divided across a diversity of species. We propose that the polychaetes Capitella teleta or Platyneris dumerilii, and rotifer Brachionus manjavacas may be strong species choices for studies of estrogen receptor signalling, because of available genomic data, established laboratory culture techniques, and gene knockout potential.
Collapse
Affiliation(s)
- A M Murillo Ramos
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - J Y Wilson
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
4
|
Holland ND, Holland LZ. In Amphioxus, Serial Block-Face Scanning Electron Microscopy Reveals the Absence of Hatschek's Right and Left Diverticula during Early Development. THE BIOLOGICAL BULLETIN 2024; 246:1-10. [PMID: 39977655 DOI: 10.1086/733426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
AbstractHatschek published the first comprehensive description of amphioxus development in the late nineteenth century. For him, a key event in early embryology was the evagination of the anterior end of the pharynx to form a right diverticulum and a left diverticulum-precursors, respectively, of the rostral coelom and preoral organ. Here we reexamine Hatschek's proposed diverticula with serial block-face scanning electron microscopy, a technique for generating fine-structural models of tissues in three dimensions. We find that no such diverticula ever form in the embryo. Instead, the anterior tip of the gut transforms into a mass of irregularly organized cells, the source of the peritoneal lining of the rostral coelom. Moreover, a cluster of cells associated with the first left segment is the likely source of the preoral organ. The discussion considers how the absence of Hatschek's gut diverticula impacts previously suggested homologies relating deuterostome head cavities.
Collapse
|
5
|
Holland ND, Holland LZ. Serial block-face scanning electron microscopy of the tail tip of post-metamorphic amphioxus finds novel myomeres with odd shapes and unusually prominent sclerocoels. J Morphol 2024; 285:e21667. [PMID: 38100741 DOI: 10.1002/jmor.21667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Serial block-face scanning electron microscopy of the tail tip of post-metamorphic amphioxus (Branchiostoma floridae) revealed some terminal myomeres never been seen before with other techniques. The morphology of these myomeres differed markedly from the chevron shapes of their more anterior counterparts. Histologically, these odd-shaped myomeres ranged from empty vesicles bordered by undifferentiated cells to ventral sacs composed of well-developed myotome, dermatome, and sclerotome. Strikingly, several of these ventral sacs gave rise to a nipple-like dorsal projection composed either entirely of sclerotome or a mixture of sclerotome and myotome. Considered as a whole, from posterior to anterior, these odd-shaped posterior myomeres suggested that their more substantial ventral part may represent the ventral limb of a chevron, while the delicate projection represents a nascent dorsal limb. This scenario contrasts with formation of chevron-shaped myomeres along most of the antero-posterior axis. Although typical chevron formation in amphioxus is surprisingly poorly studied, it seems to be attained by a dorso-ventral extension of the myomere accompanied by the assumption of a V-shape; this is similar to what happens (at least superficially) in developing fishes. Another unusual feature of the odd-shaped posterior myomeres of amphioxus is their especially distended sclerocoels. One possible function for these might be to protect the posterior end of the central nervous system from trauma when the animals burrow into the substratum.
Collapse
Affiliation(s)
- Nicholas D Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA
| | - Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
Holland ND, Holland LZ, Somorjai IML. Three-dimensional fine structure of fibroblasts and other mesodermally derived tissues in the dermis of adults of the Bahamas lancelet (Chordata, Cephalohordata), as seen by serial block-face scanning electron microscopy. J Morphol 2022; 283:1289-1298. [PMID: 35971624 DOI: 10.1002/jmor.21502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/07/2022]
Abstract
Tissues of adult cephalochordates include sparsely distributed fibroblasts. Previous work on these cells has left unsettled such questions as their developmental origin, range of functions, and even their overall shape. Here, we describe fibroblasts of a cephalochordate, the Bahamas lancelet, Asymmetron lucayanum, by serial block-face scanning electron microscopy to demonstrate their three-dimensional (3D) distribution and fine structure in a 0.56-mm length of the tail. The technique reveals in detail their position, abundance, and morphology. In the region studied, we found only 20 fibroblasts, well separated from one another. Each was strikingly stellate with long cytoplasmic processes rather similar to those of a vertebrate telocyte, a possibly fortuitous resemblance that is considered in the discussion section. In the cephalochordate dermis, the fibroblasts were never linked with one another, although they occasionally formed close associations of unknown significance with other cell types. The fibroblasts, in spite of their name, showed no signs of directly synthesizing fibrillar collagen. Instead, they appeared to be involved in the production of nonfibrous components of the extracellular matrix-both by the release of coarsely granular dense material and by secretion of more finely granular material by the local breakdown of their cytoplasmic processes. For context, the 3D structures of two other mesoderm-derived tissues (the midline mesoderm and the posteriormost somite) are also described for the region studied.
Collapse
Affiliation(s)
- Nicholas D Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA
| | - Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA
| | - Ildiko M L Somorjai
- School of Biology, University of Saint Andrews, St. Andrews, Fife, Scotland, UK
| |
Collapse
|
7
|
Holland LZ, Holland ND. The invertebrate chordate amphioxus gives clues to vertebrate origins. Curr Top Dev Biol 2022; 147:563-594. [PMID: 35337463 DOI: 10.1016/bs.ctdb.2021.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Amphioxus (cepholochordates) have long been used to infer how the vertebrates evolved from their invertebrate ancestors. However, some of the body part homologies between amphioxus and vertebrates have been controversial. This is not surprising as the amphioxus and vertebrate lineages separated half a billion years ago-plenty of time for independent loss and independent gain of features. The development of new techniques in the late 20th and early 21st centuries including transmission electron microscopy and serial blockface scanning electron microscopy in combination with in situ hybridization and immunocytochemistry to reveal spatio-temporal patterns of gene expression and gene products have greatly strengthened inference of some homologies (like those between regions of the central nervous system), although others (like nephridia) still need further support. These major advances in establishing homologies between amphioxus and vertebrates, together with strong support from comparative genomics, have firmly established amphioxus as a stand-in or model for the ancestral vertebrate.
Collapse
Affiliation(s)
- Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States.
| | - Nicholas D Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
8
|
Zou J, Wu X, Shi C, Zhong Y, Zhang L, Yan Q, Su L, Li G. A Potential Method for Rapid Screening of Amphioxus Founder Harboring Germline Mutation and Transgene. Front Cell Dev Biol 2021; 9:702290. [PMID: 34458263 PMCID: PMC8387717 DOI: 10.3389/fcell.2021.702290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Amphioxus is a promising model organism for understanding the origin and evolution of vertebrates due to its basal phylogenetic position among chordates. We here compared the mutation efficacy and mutation type of tail tips and gametes of amphioxus founders injected with Cas9 protein and six different sgRNAs targeting five distinct genes, and revealed a strong correlation for mutation efficacy and a mild correlation for mutation type among the two tissues. In addition, we also observed a positive relationship between gene insertions observed in tail tips and gametes of amphioxus founders injected with Tol2 transposase and two different transgenic constructs. Finally, we showed that amphioxus larvae which had their tail tips cut at the 3-4 gill-slit stage were able to recover within 6 days and developed a normal number of gonads at the adult stage, and that F0 larvae carry similar mutation efficacy and type in the posterior end to that in the tail tips after their metamorphosis. Together, these findings suggest a great potential for obtaining valid amphioxus founders with desired mutations and transgenes at as early as the early larval stage, which will certainly speed up the generation of amphioxus mutants and transgenes and make it more cost- and labor-effective.
Collapse
Affiliation(s)
- Jiaqi Zou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaotong Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chenggang Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yanhong Zhong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Lei Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qiuning Yan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Liuru Su
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|