1
|
Mohr AE, Sweazea KL, Bowes DA, Jasbi P, Whisner CM, Sears DD, Krajmalnik-Brown R, Jin Y, Gu H, Klein-Seetharaman J, Arciero KM, Gumpricht E, Arciero PJ. Gut microbiome remodeling and metabolomic profile improves in response to protein pacing with intermittent fasting versus continuous caloric restriction. Nat Commun 2024; 15:4155. [PMID: 38806467 PMCID: PMC11133430 DOI: 10.1038/s41467-024-48355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/26/2024] [Indexed: 05/30/2024] Open
Abstract
The gut microbiome (GM) modulates body weight/composition and gastrointestinal functioning; therefore, approaches targeting resident gut microbes have attracted considerable interest. Intermittent fasting (IF) and protein pacing (P) regimens are effective in facilitating weight loss (WL) and enhancing body composition. However, the interrelationships between IF- and P-induced WL and the GM are unknown. The current randomized controlled study describes distinct fecal microbial and plasma metabolomic signatures between combined IF-P (n = 21) versus a heart-healthy, calorie-restricted (CR, n = 20) diet matched for overall energy intake in free-living human participants (women = 27; men = 14) with overweight/obesity for 8 weeks. Gut symptomatology improves and abundance of Christensenellaceae microbes and circulating cytokines and amino acid metabolites favoring fat oxidation increase with IF-P (p < 0.05), whereas metabolites associated with a longevity-related metabolic pathway increase with CR (p < 0.05). Differences indicate GM and metabolomic factors play a role in WL maintenance and body composition. This novel work provides insight into the GM and metabolomic profile of participants following an IF-P or CR diet and highlights important differences in microbial assembly associated with WL and body composition responsiveness. These data may inform future GM-focused precision nutrition recommendations using larger sample sizes of longer duration. Trial registration, March 6, 2020 (ClinicalTrials.gov as NCT04327141), based on a previous randomized intervention trial.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - Karen L Sweazea
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ, USA
| | - Devin A Bowes
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - Paniz Jasbi
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ, USA
| | - Corrie M Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - Dorothy D Sears
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - Yan Jin
- Center of Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center of Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Judith Klein-Seetharaman
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Karen M Arciero
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY, USA
| | | | - Paul J Arciero
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY, USA.
- School of Health and Rehabilitation Sciences, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Singh S, Pandey AK, Malemnganba T, Prajapati VK. Technological advancements in viral vector designing and optimization for therapeutic applications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:57-87. [PMID: 38448144 DOI: 10.1016/bs.apcsb.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Viral vector engineering is critical to the advancement of several sectors of biotechnology, gene therapy, and vaccine development. These vectors were produced from viruses, were employed to deliver therapeutic genes or to alter biological processes. The potential for viral vectors to improve the precision, safety, and efficiency of therapeutic interventions has boosted their demand. The dynamic interplay between technological advancements and computational tools in establishing the landscape of viral vector engineering and vector optimization for therapeutic reasons is discussed in this chapter. It also emphasizes the importance of in silico techniques in maximizing vector potential for therapeutics and many phases of viral vector engineering, from genomic analysis to computer modelling and advancements to improve precise gene delivery. High-throughput screening propels the expedited process of vector selection, and computational techniques to analyze complex omics data to further enhance vector capabilities have been discussed. As in silico models reveal insights into off-target effects and integration sites, vector safety (biodistribution and toxicity) remains a crucial part and bridges the gap between preclinical and clinical investigations. Despite the limitations, this chapter depicts a future in which technology and computing merge to catapult viral vector therapy into an era of boundless possibilities.
Collapse
Affiliation(s)
- Satyendra Singh
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India
| | - Anurag Kumar Pandey
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | | | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
3
|
Mohr AE, Jasbi P, Bowes DA, Dirks B, Whisner CM, Arciero KM, Poe M, Gu H, Gumpricht E, Sweazea KL, Arciero PJ. Exploratory analysis of one versus two-day intermittent fasting protocols on the gut microbiome and plasma metabolome in adults with overweight/obesity. Front Nutr 2022; 9:1036080. [PMID: 36386914 PMCID: PMC9644216 DOI: 10.3389/fnut.2022.1036080] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/30/2022] [Indexed: 08/08/2023] Open
Abstract
Nutritional interventions are a promising therapeutic option for addressing obesity and cardiometabolic dysfunction. One such option, intermittent fasting (IF), has emerged as a viable alternative to daily caloric restriction and may beneficially modulate body weight regulation and alter the gut microbiome (GM) and plasma metabolome. This secondary analysis of a larger, registered trial (ClinicalTrials.gov ID: NCT04327141) examined the effect of a four-week intervention comparing one vs. two-consecutive days of IF in combination with protein pacing (IF-P; 4-5 meals/day, >30% protein/day) on the GM, the plasma metabolome, and associated clinical outcomes in overweight and obese adults. Participants (n = 20) were randomly assigned to either a diet consisting of one fasting day (total of 36 h) and six low-calorie P days per week (IF1-P, n = 10) or two fasting days (60 h total) and five low-calorie P days per week (IF2-P, n = 10). The fecal microbiome, clinical outcomes, and plasma metabolome were analyzed at baseline (week 0) and after four weeks. There were no significant time or interaction effects for alpha diversity; however, baseline alpha diversity was negatively correlated with percent body fat change after the four-week intervention (p = 0.030). In addition, beta-diversity for both IF groups was altered significantly by time (p = 0.001), with no significant differences between groups. The IF1-P group had a significant increase in abundance of Ruminococcaceae Incertae Sedis and Eubacterium fissicatena group (q ≤ 0.007), while the IF2-P group had a significant increase in abundance of Ruminococcaceae Incertae Sedis and a decrease in Eubacterium ventriosum group (q ≤ 0.005). The plasma metabolite profile of IF2-P participants displayed significant increases in serine, trimethylamine oxide (TMAO), levulinic acid, 3-aminobutyric acid, citrate, isocitrate, and glucuronic acid (q ≤ 0.049) compared to IF1-P. Fecal short-chain fatty acid concentrations did not differ significantly by time or between groups (p ≥ 0.126). Interestingly, gastrointestinal symptoms were significantly reduced for the IF2-P group but not for the IF1-P group. Our results demonstrate that short-term IF modestly influenced the GM community structure and the plasma metabolome, suggesting these protocols could be viable for certain nutritional intervention strategies.
Collapse
Affiliation(s)
- Alex E. Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Devin A. Bowes
- Center for Health Through Microbiomes, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Blake Dirks
- Center for Health Through Microbiomes, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Corrie M. Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
- Center for Health Through Microbiomes, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Karen M. Arciero
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY, United States
| | - Michelle Poe
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY, United States
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
- Center for Translational Science, Florida International University, Port St. Lucie, FL, United States
| | | | - Karen L. Sweazea
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Paul J. Arciero
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY, United States
| |
Collapse
|