1
|
Kupčík R, Lenčová O, Mazurová Y, Štěrba M, Vajrychová M. Methodological Aspects of μLC-MS/MS for Wide-Scale Proteomic Analysis of Anthracycline-Induced Cardiomyopathy. ACS OMEGA 2025; 10:11980-11993. [PMID: 40191338 PMCID: PMC11966270 DOI: 10.1021/acsomega.4c09377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 04/09/2025]
Abstract
The efforts to utilize microflow liquid chromatography hyphenated to tandem mass spectrometry (μLC-MS/MS) for deep-scale proteomic analysis are still growing. In this work, two-dimensional LC separation and peptide derivatization by a tandem mass tag (TMT) were used to assess the capability of μLC-MS/MS to reveal protein changes associated with the severe chronic anthracycline cardiotoxicity phenotype in comparison with nanoflow liquid chromatography (nLC-MS/MS). The analysis of the control and anthracycline-treated rabbit myocardium by μLC-MS/MS and nLC-MS/MS allowed quantification of 3956 and 4549 proteins, respectively, with 84% of these proteins shared in both data sets. Both nLC-MS/MS and μLC-MS/MS revealed marked global proteome dysregulation in severe anthracycline cardiotoxicity, with a significant change in approximately 55% of all detected proteins. The μLC-MS/MS analysis allowed less compressed and more precise determination of the TMT channel ratio and correspondingly broader fold-change protein distribution than nLC-MS/MS. The total number of significantly changed proteins was higher in nLC-MS/MS (2498 vs 2183, 1900 proteins shared), whereas the opposite was true for a number of significantly changed proteins with a fold-change cutoff ≥ 2 (535 vs 820). The profound changes concerned mainly proteins of cardiomyocyte sarcomeres, costameres, intercalated discs, mitochondria, and extracellular matrix. In addition, distinct alterations in immune and defense response were found with a remarkable involvement of type I interferon signaling that has been recently hypothesized to be essential for anthracycline cardiotoxicity pathogenesis. Hence, μLC-MS/MS was found to be a sound alternative to nLC-MS/MS that can be useful for comprehensive mapping of global myocardial proteome alterations such as those associated with severe anthracycline cardiotoxicity.
Collapse
Affiliation(s)
- Rudolf Kupčík
- Biomedical
Research Centre, University Hospital Hradec
Králové, Hradec Králové 500 05, Czech Republic
| | - Olga Lenčová
- Department
of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové 500 03, Czech Republic
| | - Yvona Mazurová
- Department
of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové 500 03, Czech Republic
| | - Martin Štěrba
- Department
of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové 500 03, Czech Republic
| | - Marie Vajrychová
- Biomedical
Research Centre, University Hospital Hradec
Králové, Hradec Králové 500 05, Czech Republic
| |
Collapse
|
2
|
Li F, Wang J, Wang P, Li L. Dephosphorylation of bZIP59 by PP2A ensures appropriate shade avoidance response in Arabidopsis. Dev Cell 2025; 60:551-566.e6. [PMID: 39536759 DOI: 10.1016/j.devcel.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/26/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Changes in light quality and quantity experienced by many shade-intolerant plants grown in close proximity lead to transcriptional reprogramming and shade avoidance syndrome (SAS). Despite the importance of phosphorylation-dependent signaling in cellular physiology, phosphorylation events during SAS are largely unknown. Here, we examined shade-regulated phosphorylation events in Arabidopsis using quantitative phosphoproteomics. We confirmed shade-induced dephosphorylation of bZIP59, a basic region/leucine zipper motif (bZIP) transcription factor. Shade treatment promotes the nuclear localization of bZIP59, which can be mimicked by mutation of the phosphorylation sites on bZIP59. Phenotypic analysis identified that bZIP59 negatively regulated shade-induced hypocotyl elongation. bZIP59 repressed the shade-induced activation of certain growth-related genes, while shade increased the DNA binding of bZIP59. Furthermore, the protein phosphatase 2A (PP2A) mediated dephosphorylation of bZIP59. Our study characterized a previously unidentified mechanism by which the phytochrome B (phyB)-PP2A-bZIP59 regulatory module integrates shade signals and transcriptomes, broadening our knowledge of phosphorylation strategies for rapid adaptation to shade.
Collapse
Affiliation(s)
- Fengquan Li
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Jiayu Wang
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Pengcheng Wang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Lin Li
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
3
|
Ergin EK, Myung JJ, Lange PF. Statistical Testing for Protein Equivalence Identifies Core Functional Modules Conserved across 360 Cancer Cell Lines and Presents a General Approach to Investigating Biological Systems. J Proteome Res 2024; 23:2169-2185. [PMID: 38804581 PMCID: PMC11166143 DOI: 10.1021/acs.jproteome.4c00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/04/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Quantitative proteomics has enhanced our capability to study protein dynamics and their involvement in disease using various techniques, including statistical testing, to discern the significant differences between conditions. While most focus is on what is different between conditions, exploring similarities can provide valuable insights. However, exploring similarities directly from the analyte level, such as proteins, genes, or metabolites, is not a standard practice and is not widely adopted. In this study, we propose a statistical framework called QuEStVar (Quantitative Exploration of Stability and Variability through statistical hypothesis testing), enabling the exploration of quantitative stability and variability of features with a combined statistical framework. QuEStVar utilizes differential and equivalence testing to expand statistical classifications of analytes when comparing conditions. We applied our method to an extensive data set of cancer cell lines and revealed a quantitatively stable core proteome across diverse tissues and cancer subtypes. The functional analysis of this set of proteins highlighted the molecular mechanism of cancer cells to maintain constant conditions of the tumorigenic environment via biological processes, including transcription, translation, and nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Enes K. Ergin
- Department
of Pathology, University of British Columbia, Vancouver, British Columbia V6T 1Z7, Canada
- Michael
Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, British Columbia V5Z 2H4, Canada
| | - Junia J.K. Myung
- Department
of Pathology, University of British Columbia, Vancouver, British Columbia V6T 1Z7, Canada
- Michael
Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, British Columbia V5Z 2H4, Canada
| | - Philipp F. Lange
- Department
of Pathology, University of British Columbia, Vancouver, British Columbia V6T 1Z7, Canada
- Michael
Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, British Columbia V5Z 2H4, Canada
| |
Collapse
|
4
|
Aljammal R, Saravanan T, Guan T, Rhodes S, Robichaux MA, Ramamurthy V. Excessive tubulin glutamylation leads to progressive cone-rod dystrophy and loss of outer segment integrity. Hum Mol Genet 2024; 33:802-817. [PMID: 38297980 DOI: 10.1093/hmg/ddae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Mutations in Cytosolic Carboxypeptidase-like Protein 5 (CCP5) are associated with vision loss in humans. To decipher the mechanisms behind CCP5-associated blindness, we generated a novel mouse model lacking CCP5. In this model, we found that increased tubulin glutamylation led to progressive cone-rod dystrophy, with cones showing a more pronounced and earlier functional loss than rod photoreceptors. The observed functional reduction was not due to cell death, levels, or the mislocalization of major phototransduction proteins. Instead, the increased tubulin glutamylation caused shortened photoreceptor axonemes and the formation of numerous abnormal membranous whorls that disrupted the integrity of photoreceptor outer segments (OS). Ultimately, excessive tubulin glutamylation led to the progressive loss of photoreceptors, affecting cones more severely than rods. Our results highlight the importance of maintaining tubulin glutamylation for normal photoreceptor function. Furthermore, we demonstrate that murine cone photoreceptors are more sensitive to disrupted tubulin glutamylation levels than rods, suggesting an essential role for axoneme in the structural integrity of the cone outer segment. This study provides valuable insights into the mechanisms of photoreceptor diseases linked to excessive tubulin glutamylation.
Collapse
Affiliation(s)
- Rawaa Aljammal
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Dr., Morgantown, WV 26506, United States
- Department of Ophthalmology and Visual Sciences, One Stadium Dr, West Virginia University, Morgantown, WV 26506, United States
| | - Thamaraiselvi Saravanan
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Dr., Morgantown, WV 26506, United States
- Department of Ophthalmology and Visual Sciences, One Stadium Dr, West Virginia University, Morgantown, WV 26506, United States
| | - Tongju Guan
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Dr., Morgantown, WV 26506, United States
- Department of Ophthalmology and Visual Sciences, One Stadium Dr, West Virginia University, Morgantown, WV 26506, United States
| | - Scott Rhodes
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Dr., Morgantown, WV 26506, United States
- Department of Ophthalmology and Visual Sciences, One Stadium Dr, West Virginia University, Morgantown, WV 26506, United States
| | - Michael A Robichaux
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Dr., Morgantown, WV 26506, United States
- Department of Ophthalmology and Visual Sciences, One Stadium Dr, West Virginia University, Morgantown, WV 26506, United States
| | - Visvanathan Ramamurthy
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Dr., Morgantown, WV 26506, United States
- Department of Ophthalmology and Visual Sciences, One Stadium Dr, West Virginia University, Morgantown, WV 26506, United States
| |
Collapse
|
5
|
Barros O, D'Agostino VG, Lara Santos L, Vitorino R, Ferreira R. Shaping the future of oral cancer diagnosis: advances in salivary proteomics. Expert Rev Proteomics 2024; 21:149-168. [PMID: 38626289 DOI: 10.1080/14789450.2024.2343585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/19/2024] [Indexed: 04/18/2024]
Abstract
INTRODUCTION Saliva has gained increasing attention in the quest for disease biomarkers. Because it is a biological fluid that can be collected is an easy, painless, and safe way, it has been increasingly studied for the identification of oral cancer biomarkers. This is particularly important because oral cancer is often diagnosed at late stages with a poor prognosis. AREAS COVERED The review addresses the evolution of the experimental approaches used in salivary proteomics studies of oral cancer over the years and outlines advantages and pitfalls related to each one. In addition, examines the current landscape of oral cancer biomarker discovery and translation focusing on salivary proteomic studies. This discussion is based on an extensive literature search (PubMed, Scopus and Google Scholar). EXPERT OPINION The introduction of mass spectrometry has revolutionized the study of salivary proteomics. In the future, the focus will be on refining existing methods and introducing powerful experimental techniques such as mass spectrometry with selected reaction monitoring, which, despite their effectiveness, are still underutilized due to their high cost. In addition, conducting studies with larger cohorts and establishing standardized protocols for salivary proteomics are key challenges that need to be addressed in the coming years.
Collapse
Affiliation(s)
- Oriana Barros
- Department of Medical Sciences, Institute of Biomedicine iBiMED, University of Aveiro, Aveiro, Portugal
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) and Surgical Department of Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
| | - Vito G D'Agostino
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Lucio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) and Surgical Department of Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine iBiMED, University of Aveiro, Aveiro, Portugal
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) and Surgical Department of Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- UnIC, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
6
|
Miyoshi K, Hishinuma E, Matsukawa N, Shirasago Y, Watanabe M, Sato T, Sato Y, Kumondai M, Kikuchi M, Koshiba S, Fukasawa M, Maekawa M, Mano N. Global Proteomics for Identifying the Alteration Pathway of Niemann-Pick Disease Type C Using Hepatic Cell Models. Int J Mol Sci 2023; 24:15642. [PMID: 37958627 PMCID: PMC10648601 DOI: 10.3390/ijms242115642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive disorder with progressive neurodegeneration. Although the causative genes were previously identified, NPC has unclear pathophysiological aspects, and patients with NPC present various symptoms and onset ages. However, various novel biomarkers and metabolic alterations have been investigated; at present, few comprehensive proteomic alterations have been reported in relation to NPC. In this study, we aimed to elucidate proteomic alterations in NPC and perform a global proteomics analysis for NPC model cells. First, we developed two NPC cell models by knocking out NPC1 using CRISPR/Cas9 (KO1 and KO2). Second, we performed a label-free (LF) global proteomics analysis. Using the LF approach, more than 300 proteins, defined as differentially expressed proteins (DEPs), changed in the KO1 and/or KO2 cells, while the two models shared 35 DEPs. As a bioinformatics analysis, the construction of a protein-protein interaction (PPI) network and an enrichment analysis showed that common characteristic pathways such as ferroptosis and mitophagy were identified in the two model cells. There are few reports of the involvement of NPC in ferroptosis, and this study presents ferroptosis as an altered pathway in NPC. On the other hand, many other pathways and DEPs were previously suggested to be associated with NPC, supporting the link between the proteome analyzed here and NPC. Therapeutic research based on these results is expected in the future.
Collapse
Affiliation(s)
- Keitaro Miyoshi
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Eiji Hishinuma
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan; (E.H.)
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan
| | - Naomi Matsukawa
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan
| | - Yoshitaka Shirasago
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masahiro Watanabe
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Masafumi Kikuchi
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Seizo Koshiba
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan; (E.H.)
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masamitsu Maekawa
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan; (E.H.)
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Nariyasu Mano
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| |
Collapse
|
7
|
Zhao H, Wu Q, Li N, Chen Y. The mechanism of chronic unpredictable mild stress induced high blood pressure in rats: a proteomic and targeted metabolomic analysis. Mol Omics 2023. [PMID: 36938653 DOI: 10.1039/d2mo00332e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Chronic stress, a leading factor for high blood pressure (BP) and even hypertension, affects health quality seriously. However, the management is rather difficult in our rapidly developing modern society, and the underlying mechanism that caused hypertension remains incompletely understood. In this study, we established a rat model of high BP induced by chronic unpredictable mild stress (CUMS). The results showed that CUMS increased the BP and heart rate, as well as the concentrations of CORT, NA, and ACTH. Based on tandem mass tag (TMT)-labeled proteomics, 13 proteins changed in RVLM. Then, targeted metabolomics together with real-time qPCR were applied to validate the levels of the biomolecules quantitatively. The related molecules were confirmed to reveal that CUMS has a great role in the upregulation of muscle contraction, synthesis of cAMP and transport of metals, while down-regulating ralaxin signaling. This finding facilitates a better understanding of the mechanism of hypertension induced by chronic stress and could provide an insight into the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Hongxia Zhao
- Zhanjiang Institution of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, 524045, China. .,School of medicine, Shanghai University, Shanghai, 200444, China
| | - Qiong Wu
- Department of Pharmacy, Yinchuan Women and Children Healthcare Hospital, Yinchuan, 750000, China. .,School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Na Li
- School of medicine, Shanghai University, Shanghai, 200444, China.,School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yongchun Chen
- Department of Pharmacy, The First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China.
| |
Collapse
|
8
|
Proteomic Analysis of Skeletal Muscle and White Adipose Tissue after Aerobic Exercise Training in High Fat Diet Induced Obese Mice. Int J Mol Sci 2023; 24:ijms24065743. [PMID: 36982812 PMCID: PMC10052314 DOI: 10.3390/ijms24065743] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Obesity is associated with excessive fat accumulation in adipose tissue and other organs, such as skeletal muscle, whereas aerobic exercise (AE) plays an important role in managing obesity through profound protein regulation. Our study aimed to investigate the impact of AE on proteomic changes in both the skeletal muscle and the epididymal fat pad (EFP) of high-fat-diet-induced obese mice. Bioinformatic analyses were performed on differentially regulated proteins using gene ontology enrichment analysis and ingenuity pathway analysis. Eight weeks of AE significantly reduced body weight, increased the serum FNDC5 level, and improved the homeostatic model assessment of insulin resistance. A high-fat diet caused alterations in a subset of proteins involved in the sirtuin signaling pathway and the production of reactive oxygen species in both skeletal muscle and EFP, leading to insulin resistance, mitochondrial dysfunction, and inflammation. On the other hand, AE upregulated skeletal muscle proteins (NDUFB5, NDUFS2, NDUFS7, ETFD, FRDA, and MKNK1) that enhance mitochondrial function and insulin sensitivity. Additionally, the upregulation of LDHC and PRKACA and the downregulation of CTBP1 in EFP can promote the browning of white adipose tissue with the involvement of FNDC5/irisin in the canonical pathway. Our study provides insights into AE-induced molecular responses and may help further develop exercise-mimicking therapeutic targets.
Collapse
|