1
|
Yu X, Kawakami R, Yambe S, Yoshimoto Y, Sasaki T, Higuchi S, Watanabe H, Akiyama H, Miura S, Hu K, Kondoh G, Sagasaki R, Inui M, Adachi T, Docheva D, Imamura T, Shukunami C. Dynamic interactions between cartilaginous and tendinous/ligamentous primordia during musculoskeletal integration. Development 2025; 152:dev204512. [PMID: 40135875 DOI: 10.1242/dev.204512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/14/2025] [Indexed: 03/27/2025]
Abstract
Proper connections between cartilaginous and muscular primordia through tendinous/ligamentous primordia are essential for musculoskeletal integration. Herein, we report a novel double-reporter mouse model for investigating this process via fluorescently visualising scleraxis (Scx) and SRY-box containing gene 9 (Sox9) expression. We generated ScxTomato transgenic mice and crossed them with Sox9EGFP knock-in mice to obtain ScxTomato;Sox9EGFP mice. Deep imaging of optically cleared double-reporter embryos at E13.5 and E16.5 revealed previously unknown differences in the dynamic interactions between cartilaginous and tendinous/ligamentous primordia in control and Scx-deficient mice. Tendon/ligament maturation was evaluated through simultaneous detection of fluorescence and visualisation of collagen fibre formation using second harmonic generation imaging. Lack of deltoid tuberosity in Scx-deficient mice caused misdirected muscle attachment with morphological changes. Loss of Scx also dysregulated progenitor cell fate determination in the chondrotendinous junction, resulting in the formation of a rounded enthesis rather than the protruding enthesis observed in the control. Hence, our double-reporter mouse system, in combination with loss- or gain-of-function approaches, is a unique and powerful tool that could be used to gain a comprehensive understanding of musculoskeletal integration.
Collapse
Affiliation(s)
- Xinyi Yu
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Ryosuke Kawakami
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Ehime 791-0295, Japan
| | - Shinsei Yambe
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuki Yoshimoto
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Takako Sasaki
- Department of Biochemistry II, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Shinnosuke Higuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hitomi Watanabe
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu 501-1193, Japan
| | - Shigenori Miura
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kadi Hu
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Gen Kondoh
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Ramu Sagasaki
- Laboratory of Animal Regeneration Systemology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| | - Masafumi Inui
- Laboratory of Animal Regeneration Systemology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| | - Taiji Adachi
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97074 Würzburg, Germany
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Ehime 791-0295, Japan
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
2
|
van den Akker GGH, Zacchini F, Housmans BAC, van der Vloet L, Caron MMJ, Montanaro L, Welting TJM. Current Practice in Bicistronic IRES Reporter Use: A Systematic Review. Int J Mol Sci 2021; 22:5193. [PMID: 34068921 PMCID: PMC8156625 DOI: 10.3390/ijms22105193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022] Open
Abstract
Bicistronic reporter assays have been instrumental for transgene expression, understanding of internal ribosomal entry site (IRES) translation, and identification of novel cap-independent translational elements (CITE). We observed a large methodological variability in the use of bicistronic reporter assays and data presentation or normalization procedures. Therefore, we systematically searched the literature for bicistronic IRES reporter studies and analyzed methodological details, data visualization, and normalization procedures. Two hundred fifty-seven publications were identified using our search strategy (published 1994-2020). Experimental studies on eukaryotic adherent cell systems and the cell-free translation assay were included for further analysis. We evaluated the following methodological details for 176 full text articles: the bicistronic reporter design, the cell line or type, transfection methods, and time point of analyses post-transfection. For the cell-free translation assay, we focused on methods of in vitro transcription, type of translation lysate, and incubation times and assay temperature. Data can be presented in multiple ways: raw data from individual cistrons, a ratio of the two, or fold changes thereof. In addition, many different control experiments have been suggested when studying IRES-mediated translation. In addition, many different normalization and control experiments have been suggested when studying IRES-mediated translation. Therefore, we also categorized and summarized their use. Our unbiased analyses provide a representative overview of bicistronic IRES reporter use. We identified parameters that were reported inconsistently or incompletely, which could hamper data reproduction and interpretation. On the basis of our analyses, we encourage adhering to a number of practices that should improve transparency of bicistronic reporter data presentation and improve methodological descriptions to facilitate data replication.
Collapse
Affiliation(s)
- Guus Gijsbertus Hubert van den Akker
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Federico Zacchini
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna University, I-40138 Bologna, Italy; (F.Z.); (L.M.)
- Centro di Ricerca Biomedica Applicata—CRBA, Bologna University, Policlinico di Sant’Orsola, I-40138 Bologna, Italy
| | - Bas Adrianus Catharina Housmans
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Laura van der Vloet
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Marjolein Maria Johanna Caron
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Lorenzo Montanaro
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna University, I-40138 Bologna, Italy; (F.Z.); (L.M.)
- Centro di Ricerca Biomedica Applicata—CRBA, Bologna University, Policlinico di Sant’Orsola, I-40138 Bologna, Italy
- Programma Dipartimentale in Medicina di Laboratorio, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, I-40138 Bologna, Italy
| | - Tim Johannes Maria Welting
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| |
Collapse
|