1
|
Huang S, Shi J, Shen J, Fan X. Metabolic reprogramming of neutrophils in the tumor microenvironment: Emerging therapeutic targets. Cancer Lett 2025; 612:217466. [PMID: 39862916 DOI: 10.1016/j.canlet.2025.217466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Neutrophils are pivotal in the immune system and have been recognized as significant contributors to cancer development and progression. These cells undergo metabolic reprogramming in response to various stimulus, including infections, diseases, and the tumor microenvironment (TME). Under normal conditions, neutrophils primarily rely on aerobic glucose metabolism for energy production. However, within the TME featured by hypoxic and nutrient-deprived conditions, they shift to altered anaerobic glycolysis, lipid metabolism, mitochondrial metabolism and amino acid metabolism to perform their immunosuppressive functions and facilitate tumor progression. Targeting neutrophils within the TME is a promising therapeutic approach. Yet, focusing on their metabolic pathways presents a novel strategy to enhance cancer immunotherapy. This review synthesizes the current understanding of neutrophil metabolic reprogramming in the TME, with an emphasis on the underlying molecular mechanisms and signaling pathways. Studying neutrophil metabolism in the TME poses challenges, such as their short lifespan and the metabolic complexity of the environment, necessitating the development of advanced research methodologies. This review also discusses emerging solutions to these challenges. In conclusion, given their integral role in the TME, targeting the metabolic pathways of neutrophils could offer a promising avenue for cancer therapy.
Collapse
Affiliation(s)
- Shiyun Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Jiahao Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| |
Collapse
|
2
|
Pham AT, Oliveira AC, Albanna M, Alvarez-Castanon J, Dupee Z, Patel D, Fu C, Mukhsinova L, Nguyen A, Jin L, Bryant AJ. Non-Interferon-Dependent Role of STING Signaling in Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2024; 44:124-142. [PMID: 37942608 PMCID: PMC10872846 DOI: 10.1161/atvbaha.123.320121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Patients with constitutive activation of DNA-sensing pathway through stimulator of IFN (interferon) genes (STING), such as those with STING-associated vasculopathy with onset in infancy, develop pulmonary hypertension (PH). However, the role of STING signaling in general PH patients is heretofore undescribed. Here, we seek to investigate the role of STING in PH development. METHODS STING expression in patient lung samples was examined. PH was induced in global STING-deficient mice and global type I IFN receptor 1-deficient mice using bleomycin or chronic hypoxia exposure. PH development was evaluated by right ventricular systolic pressure and Fulton index, with additional histological and flow cytometric analysis. VEGF (vascular endothelial growth factor) expression on murine immune cells was quantified and evaluated with multiplex and flow cytometry. Human myeloid-derived cells were differentiated from peripheral blood mononuclear cells and treated with either STING agonist or STING antagonist for evaluation of VEGF secretion. RESULTS Global STING deficiency protects mice from PH development, and STING-associated PH seems independent of type I IFN signaling. Furthermore, a role for STING-VEGF signaling pathway in PH development was demonstrated, with altered VEGF secretion in murine pulmonary infiltrated myeloid cells in a STING-dependent manner. In addition, pharmacological manipulation of STING in human myeloid-derived cells supports in vivo findings. Finally, a potential role of STING-VEGF-mediated apoptosis in disease development and progression was illustrated, providing a roadmap toward potential therapeutic applications. CONCLUSIONS Overall, these data provide concrete evidence of STING involvement in PH, establishing biological plausibility for STING-related therapies in PH treatment.
Collapse
Affiliation(s)
- Ann T Pham
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | - Aline C Oliveira
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | - Muhammad Albanna
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | | | - Zadia Dupee
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | - Diya Patel
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | - Chunhua Fu
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | - Laylo Mukhsinova
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | - Amy Nguyen
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | - Lei Jin
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | - Andrew J Bryant
- Department of Medicine, University of Florida College of Medicine, Gainesville
| |
Collapse
|
3
|
Bekić M, Tomić S. Myeloid-derived suppressor cells in the therapy of autoimmune diseases. Eur J Immunol 2023; 53:e2250345. [PMID: 37748117 DOI: 10.1002/eji.202250345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are well recognized as critical factors in the pathology of tumors. However, their roles in autoimmune diseases are still unclear, which hampers the development of efficient immunotherapies. The role of different MDSCs subsets in multiple sclerosis, inflammatory bowel diseases, rheumatoid arthritis, type 1 diabetes, and systemic lupus erythematosus displayed different mechanisms of immune suppression, and several studies pointed to MDSCs' capacity to induce T-helper (Th)17 cells and tissue damage. These results also suggested that MDSCs could be present in different functional states and utilize different mechanisms for controlling the activity of T and B cells. Therefore, various therapeutic strategies should be employed to restore homeostasis in autoimmune diseases. The therapies harnessing MDSCs could be designed either as cell therapy or rely on the expansion and activation of MDSCs in vivo, or their depletion. Cumulatively, MDSCs are inevitable players in autoimmunity, and rational approaches in developing therapies are required to avoid the adverse effects of MDSCs and harness their suppressive mechanisms to improve the overall efficacy of autoimmunity therapy.
Collapse
Affiliation(s)
- Marina Bekić
- Institute for the Application of Nuclear Energy, University in Belgrade, Beograd, Serbia
| | - Sergej Tomić
- Institute for the Application of Nuclear Energy, University in Belgrade, Beograd, Serbia
| |
Collapse
|
4
|
Choi JE, MacDonald CR, Gandhi N, Das G, Repasky EA, Mohammadpour H. Isolation of human and mouse myeloid-derived suppressor cells for metabolic analysis. STAR Protoc 2022; 3:101389. [PMID: 35600927 PMCID: PMC9120228 DOI: 10.1016/j.xpro.2022.101389] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Metabolic reprogramming is associated with myeloid-derived suppressor cell (MDSC) immunosuppressive function. Here, we outline the process for acquiring MDSCs from human and murine sources for subsequent analysis of fatty acid oxidation, oxidative phosphorylation, and glycolysis using the Seahorse XFe 96 Analyzer. Murine MDSCs can be isolated directly from tumor-bearing mice or derived through IL-6 and GM-CSF culture of bone marrow cells from non-tumor-bearing mice. To generate human MDSCs, peripheral blood mononuclear cells (PBMCs) can be cultured with IL-6 and GM-CSF. For complete details on the use and execution of this protocol, please refer to Mohammadpour et al. (2021).
Collapse
Affiliation(s)
- Jee Eun Choi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Cameron R. MacDonald
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Nishant Gandhi
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Gokul Das
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Elizabeth A. Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Hemn Mohammadpour
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| |
Collapse
|
5
|
Ge Y, Cheng D, Jia Q, Xiong H, Zhang J. Mechanisms Underlying the Role of Myeloid-Derived Suppressor Cells in Clinical Diseases: Good or Bad. Immune Netw 2021; 21:e21. [PMID: 34277111 PMCID: PMC8263212 DOI: 10.4110/in.2021.21.e21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) have strong immunosuppressive activity and are morphologically similar to conventional monocytes and granulocytes. The development and classification of these cells have, however, been controversial. The activation network of MDSCs is relatively complex, and their mechanism of action is poorly understood, creating an avenue for further research. In recent years, MDSCs have been found to play an important role in immune regulation and in effectively inhibiting the activity of effector lymphocytes. Under certain conditions, particularly in the case of tissue damage or inflammation, MDSCs play a leading role in the immune response of the central nervous system. In cancer, however, this can lead to tumor immune evasion and the development of related diseases. Under cancerous conditions, tumors often alter bone marrow formation, thus affecting progenitor cell differentiation, and ultimately, MDSC accumulation. MDSCs are important contributors to tumor progression and play a key role in promoting tumor growth and metastasis, and even reduce the efficacy of immunotherapy. Currently, a number of studies have demonstrated that MDSCs play a key regulatory role in many clinical diseases. In light of these studies, this review discusses the origin of MDSCs, the mechanisms underlying their activation, their role in a variety of clinical diseases, and their function in immune response regulation.
Collapse
Affiliation(s)
- Yongtong Ge
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining 272067, China
| | - Dalei Cheng
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining 272067, China
| | - Qingzhi Jia
- Affiliated Hospital of Jining Medical College, Jining Medical University, Jining 272067, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining 272067, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining 272067, China
| |
Collapse
|