1
|
Zupan H, Keller BG. Toward Grid-Based Models for Molecular Association. J Chem Theory Comput 2025; 21:614-628. [PMID: 39803919 PMCID: PMC11780749 DOI: 10.1021/acs.jctc.4c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 12/27/2024] [Indexed: 01/29/2025]
Abstract
This paper presents a grid-based approach to model molecular association processes as an alternative to sampling-based Markov models. Our method discretizes the six-dimensional space of relative translation and orientation into grid cells. By discretizing the Fokker-Planck operator governing the system dynamics via the square-root approximation, we derive analytical expressions for the transition rate constants between grid cells. These expressions depend on geometric properties of the grid, such as the cell surface area and volume, which we provide. In addition, one needs only the molecular energy at the grid cell center, circumventing the need for extensive MD simulations and reducing the number of energy evaluations to the number of grid cells. The resulting rate matrix is closely related to the Markov state model transition matrix, offering insights into metastable states and association kinetics. We validate the accuracy of the model in identifying metastable states and binding mechanisms, though improvements are necessary to address limitations like ignoring bulk transitions and anisotropic rotational diffusion. The flexibility of this grid-based method makes it applicable to a variety of molecular systems and energy functions, including those derived from quantum mechanical calculations. The software package MolGri, which implements this approach, offers a systematic and computationally efficient tool for studying molecular association processes.
Collapse
Affiliation(s)
- Hana Zupan
- Department of Biology, Chemistry
and Pharmacy, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Bettina G. Keller
- Department of Biology, Chemistry
and Pharmacy, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
2
|
Zhang SP, Chen LJ, Shi ZL, Li X, Ma Y. Prediction of SHP2-E76K binding sites based on molecular dynamics simulation and Markov algorithm. J Biomol Struct Dyn 2024:1-12. [PMID: 39558779 DOI: 10.1080/07391102.2024.2431193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/18/2024] [Indexed: 11/20/2024]
Abstract
SHP2-E76K, a mutant encoded by the PTPN11 gene, was associated with various solid tumors, such as lung cancer, glioblastoma, and intellectual disability. SHP2-E76K has become potential drug targets, while there was no effective inhibitor against the mutant currently. At present, the crystal complex structure of SHP099 with SHP2-E76K has been reported in the RCSB PDB protein data bank, however, the dynamic structure of SHP099 binding to the active center of SHP2-E76K protein was still lacking. Therefore, this study used molecular dynamics simulation and Markov model to characterize the kinetics of the inhibitor SHP099 with SHP2-E76K enzyme and to determine the active binding site, which would give a hint of a vital enzyme-substrate interaction in atomistic detail that proposed the potential to be applied for the discovery of more effective SHP2-E76K inhibitors and, in broader terms, dynamic protein-drug interactions.
Collapse
Affiliation(s)
- Si-Pei Zhang
- Department of Pharmacy, Tianjin Chest Hospital, Tianjin, China
| | - Li-Juan Chen
- Department of Pharmacy, Tianjin Chest Hospital, Tianjin, China
| | - Zhen-Liang Shi
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Xin Li
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Ying Ma
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
3
|
Zhang S, Ge Y, Voelz VA. Improved Estimates of Folding Stabilities and Kinetics with Multiensemble Markov Models. Biochemistry 2024; 63:3045-3056. [PMID: 39509176 DOI: 10.1021/acs.biochem.4c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Markov State Models (MSMs) have been widely applied to understand protein folding mechanisms by predicting long time scale dynamics from ensembles of short molecular simulations. Most MSM estimators enforce detailed balance, assuming that trajectory data are sampled at an equilibrium. This is rarely the case for ab initio folding studies, however, and as a result, MSMs can severely underestimate protein folding stabilities from such data. To remedy this problem, we have developed an enhanced-sampling protocol in which (1) unbiased folding simulations are performed and sparse tICA is used to obtain features that best capture the slowest events in folding, (2) umbrella sampling along this reaction coordinate is performed to observe folding and unfolding transitions, and (3) the thermodynamics and kinetics of folding are estimated using multiensemble Markov models (MEMMs). Using this protocol, folding pathways, rates, and stabilities of a designed α-helical hairpin, Z34C, can be predicted in good agreement with experimental measurements. These results indicate that accurate simulation-based estimates of absolute folding stabilities are within reach, with implications for the computational design of folded miniproteins and peptidomimetics.
Collapse
Affiliation(s)
- Si Zhang
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Yunhui Ge
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Vincent A Voelz
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
4
|
Raddi RM, Voelz VA. Markov State Model of Solvent Features Reveals Water Dynamics in Protein-Peptide Binding. J Phys Chem B 2023; 127:10682-10690. [PMID: 38078851 DOI: 10.1021/acs.jpcb.3c04775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
In this work, we investigate the role of solvent in the binding reaction of the p53 transactivation domain (TAD) peptide to its receptor MDM2. Previously, our group generated 831 μs of explicit-solvent aggregate molecular simulation trajectory data for the MDM2-p53 peptide binding reaction using large-scale distributed computing and subsequently built a Markov State Model (MSM) of the binding reaction (Zhou et al. 2017). Here, we perform a tICA analysis and construct an MSM with similar hyperparameters while using only solvent-based structural features. We find a remarkably similar landscape but accelerated implied timescales for the slowest motions. The solvent shells contributing most to the first tICA eigenvector are those centered on Lys24 and Thr18 of the p53 TAD peptide in the range of 3-6 Å. Important solvent shells were visualized to reveal solvation and desolvation transitions along the peptide-protein binding trajectories. Our results provide a solvent-centric view of the hydrophobic effect in action for a realistic peptide-protein binding scenario.
Collapse
Affiliation(s)
- Robert M Raddi
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Vincent A Voelz
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
5
|
Weigle AT, Feng J, Shukla D. Thirty years of molecular dynamics simulations on posttranslational modifications of proteins. Phys Chem Chem Phys 2022; 24:26371-26397. [PMID: 36285789 PMCID: PMC9704509 DOI: 10.1039/d2cp02883b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Posttranslational modifications (PTMs) are an integral component to how cells respond to perturbation. While experimental advances have enabled improved PTM identification capabilities, the same throughput for characterizing how structural changes caused by PTMs equate to altered physiological function has not been maintained. In this Perspective, we cover the history of computational modeling and molecular dynamics simulations which have characterized the structural implications of PTMs. We distinguish results from different molecular dynamics studies based upon the timescales simulated and analysis approaches used for PTM characterization. Lastly, we offer insights into how opportunities for modern research efforts on in silico PTM characterization may proceed given current state-of-the-art computing capabilities and methodological advancements.
Collapse
Affiliation(s)
- Austin T Weigle
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jiangyan Feng
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
6
|
Ge Y, Voelz VA. Estimation of binding rates and affinities from multiensemble Markov models and ligand decoupling. J Chem Phys 2022; 156:134115. [PMID: 35395889 PMCID: PMC8993428 DOI: 10.1063/5.0088024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Accurate and efficient simulation of the thermodynamics and kinetics of protein-ligand interactions is crucial for computational drug discovery. Multiensemble Markov Model (MEMM) estimators can provide estimates of both binding rates and affinities from collections of short trajectories but have not been systematically explored for situations when a ligand is decoupled through scaling of non-bonded interactions. In this work, we compare the performance of two MEMM approaches for estimating ligand binding affinities and rates: (1) the transition-based reweighting analysis method (TRAM) and (2) a Maximum Caliber (MaxCal) based method. As a test system, we construct a small host-guest system where the ligand is a single uncharged Lennard-Jones (LJ) particle, and the receptor is an 11-particle icosahedral pocket made from the same atom type. To realistically mimic a protein-ligand binding system, the LJ ϵ parameter was tuned, and the system was placed in a periodic box with 860 TIP3P water molecules. A benchmark was performed using over 80 µs of unbiased simulation, and an 18-state Markov state model was used to estimate reference binding affinities and rates. We then tested the performance of TRAM and MaxCal when challenged with limited data. Both TRAM and MaxCal approaches perform better than conventional Markov state models, with TRAM showing better convergence and accuracy. We find that subsampling of trajectories to remove time correlation improves the accuracy of both TRAM and MaxCal and that in most cases, only a single biased ensemble to enhance sampled transitions is required to make accurate estimates.
Collapse
Affiliation(s)
- Yunhui Ge
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, USA
| | - Vincent A Voelz
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
7
|
Gu H, Wang W, Cao S, Unarta IC, Yao Y, Sheong FK, Huang X. RPnet: a reverse-projection-based neural network for coarse-graining metastable conformational states for protein dynamics. Phys Chem Chem Phys 2022; 24:1462-1474. [PMID: 34985469 DOI: 10.1039/d1cp03622j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Markov State Model (MSM) is a powerful tool for modeling long timescale dynamics based on numerous short molecular dynamics (MD) simulation trajectories, which makes it a useful tool for elucidating the conformational changes of biological macromolecules. By partitioning the phase space into discretized states and estimating the probabilities of inter-state transitions based on short MD trajectories, one can construct a kinetic network model that could be used to extrapolate long-timescale kinetics if the Markovian condition is met. However, meeting the Markovian condition often requires hundreds or even thousands of states (microstates), which greatly hinders the comprehension of the conformational dynamics of complex biomolecules. Kinetic lumping algorithms can coarse grain numerous microstates into a handful of metastable states (macrostates), which would greatly facilitate the elucidation of biological mechanisms. In this work, we have developed a reverse-projection-based neural network (RPnet) to lump microstates into macrostates, by making use of a physics-based loss function that is based on the projection operator framework of conformational dynamics. By recognizing that microstate and macrostate transition modes can be related through a projection process, we have developed a reverse-projection scheme to directly compare the microstate and macrostate dynamics. Based on this reverse-projection scheme, we designed a loss function that allows the effective assessment of the quality of a given kinetic lumping. We then make use of a neural network to efficiently minimize this loss function to obtain an optimized set of macrostates. We have demonstrated the power of our RPnet in analyzing the dynamics of a numerical 2D potential, alanine dipeptide, and the clamp opening of an RNA polymerase. In all these systems, we have illustrated that our method could yield comparable or better results than competing methods in terms of state partitioning and reproduction of slow dynamics. We expect that our RPnet holds promise in analyzing the conformational dynamics of biological macromolecules.
Collapse
Affiliation(s)
- Hanlin Gu
- Department of Mathematics, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Wei Wang
- Department of Chemistry, Hong Kong University of Science and Technology, Kowloon, Hong Kong.
| | - Siqin Cao
- Department of Chemistry, Hong Kong University of Science and Technology, Kowloon, Hong Kong.
| | - Ilona Christy Unarta
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Yuan Yao
- Department of Mathematics, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Fu Kit Sheong
- Department of Chemistry, Hong Kong University of Science and Technology, Kowloon, Hong Kong. .,Institute for Advanced Study, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Xuhui Huang
- Department of Chemistry, Hong Kong University of Science and Technology, Kowloon, Hong Kong. .,Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
8
|
Ge Y, Zhang S, Erdelyi M, Voelz VA. Solution-State Preorganization of Cyclic β-Hairpin Ligands Determines Binding Mechanism and Affinities for MDM2. J Chem Inf Model 2021; 61:2353-2367. [PMID: 33905247 PMCID: PMC9960209 DOI: 10.1021/acs.jcim.1c00029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Understanding mechanisms of protein folding and binding is crucial to designing their molecular function. Molecular dynamics (MD) simulations and Markov state model (MSM) approaches provide a powerful way to understand complex conformational change that occurs over long time scales. Such dynamics are important for the design of therapeutic peptidomimetic ligands, whose affinity and binding mechanism are dictated by a combination of folding and binding. To examine the role of preorganization in peptide binding to protein targets, we performed massively parallel explicit-solvent MD simulations of cyclic β-hairpin ligands designed to mimic the p53 transactivation domain and competitively bind mouse double minute 2 homologue (MDM2). Disrupting the MDM2-p53 interaction is a therapeutic strategy to prevent degradation of the p53 tumor suppressor in cancer cells. MSM analysis of over 3 ms of aggregate trajectory data enabled us to build a detailed mechanistic model of coupled folding and binding of four cyclic peptides which we compare to experimental binding affinities and rates. The results show a striking relationship between the relative preorganization of each ligand in solution and its affinity for MDM2. Specifically, changes in peptide conformational populations predicted by the MSMs suggest that entropy loss upon binding is the main factor influencing affinity. The MSMs also enable detailed examination of non-native interactions which lead to misfolded states and comparison of structural ensembles with experimental NMR measurements. In contrast to an MSM study of p53 transactivation domain (TAD) binding to MDM2, MSMs of cyclic β-hairpin binding show a conformational selection mechanism. Finally, we make progress toward predicting accurate off rates of cyclic peptides using multiensemble Markov models (MEMMs) constructed from unbiased and biased simulated trajectories.
Collapse
Affiliation(s)
- Yunui Ge
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Si Zhang
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Mate Erdelyi
- Department of Chemistry - BMC, Uppsala University, SE-75123 Uppsala, Sweden
| | - Vincent A. Voelz
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|