1
|
Fan L, Wang J, Zhang Z, Zuo Z, Liu Y, Ye F, Ma B, Sun Z. Identification of RNA methylation-related lncRNAs for prognostic assessment and immunotherapy in bladder cancer-based on single cell/Bulk RNA sequencing data. Funct Integr Genomics 2024; 24:56. [PMID: 38472459 DOI: 10.1007/s10142-024-01283-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/10/2023] [Accepted: 01/01/2024] [Indexed: 03/14/2024]
Abstract
Bladder cancer is a malignancy characterized by significant heterogeneity. RNA methylation has received an increasing amount of attention in recent years. RNA data were collected from the GEO database, and cell subsets were classified according to specific cell markers. Epithelial, immunological, and fibroblast cells were clustered individually to explore the tumor heterogeneity. To distinguish between malignant and benign cells, the InferCNV R package was employed. The monocle2 R package was used for pseudotime analysis. The Decouple R package was used for transcription factor analysis of each cell subgroup, and PROGENy was used to predict the activity of pathways related to tumors. The target lncRNA was screened for model construction. In addition, the qPCR experiment was used to detect the transcription level of lncRNA. Epithelial cells, fibroblasts, and T cells significantly differ in tumor and normal tissues. The lncRNAs related to m6A/m5C/m1A were intersected to construct the model. Finally, six model lncRNAs (PSMB8-AS1, THUMPD3-AS1, U47924.27, XXbac-B135H6.15, MIR99AHG, and C14orf132) were screened. High-risk individuals were shown to have a better prognosis. qPCR experiments showed that the model lncRNA was differentially expressed between normal and tumor cells. Immunotherapy will be more effective in treating individuals with lower risk than those with higher risk using 4 candidate drugs. The prognostic m6A/m5C/m1A-related lncRNA model was constructed for evaluating the clinical outcomes of bladder cancer patients and guiding clinical medication.
Collapse
Affiliation(s)
- LianMing Fan
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Jie Wang
- Department of Urology, The Second People's Hospital of Meishan City, Meishan, 620500, Sichuan, China
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Zhiya Zhang
- Department of Oncology The Second People's Hospital of Meishan City, Meishan, 620500, Sichuan, China
| | - Zili Zuo
- Department of Urology, The Second People's Hospital of Meishan City, Meishan, 620500, Sichuan, China
| | - Yunfei Liu
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | - Fangdie Ye
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Baoluo Ma
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, 130000, Jilin, China.
| | - Zhou Sun
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, 130000, Jilin, China.
- Department of Urology, The First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei, China.
| |
Collapse
|
2
|
Liu Q, Liu M, Yang T, Wang X, Cheng P, Zhou H. What can we do to optimize mitochondrial transplantation therapy for myocardial ischemia-reperfusion injury? Mitochondrion 2023; 72:72-83. [PMID: 37549815 DOI: 10.1016/j.mito.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/20/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Mitochondrial transplantation is a promising solution for the heart following ischemia-reperfusion injury due to its capacity to replace damaged mitochondria and restore cardiac function. However, many barriers (such as inadequate mitochondrial internalization, poor survival of transplanted mitochondria, few mitochondria colocalized with cardiac cells) compromise the replacement of injured mitochondria with transplanted mitochondria. Therefore, it is necessary to optimize mitochondrial transplantation therapy to improve clinical effectiveness. By analogy, myocardial ischemia-reperfusion injury is like a withered flower, it needs to absorb enough nutrients to recover and bloom. In this review, we present a comprehensive overview of "nutrients" (source of exogenous mitochondria and different techniques for mitochondrial isolation), "absorption" (mitochondrial transplantation approaches, mitochondrial transplantation dose and internalization mechanism), and "flowering" (the mechanism of mitochondrial transplantation in cardioprotection) for myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Liu
- Comprehensive treatment area of Traditional Chinese Medicine, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianshu Yang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peipei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
3
|
Rozsivalova DH, Popovic M, Kaul H, Trifunovic A. Isolation of Functional Mitochondria and Pure mtDNA from Murine Tissues. Methods Mol Biol 2023; 2615:3-16. [PMID: 36807780 DOI: 10.1007/978-1-0716-2922-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Detailed analysis of mitochondrial function cannot be achieved without good quality preparations of isolated mitochondria. Ideally, the isolation protocol should be quick, while producing a reasonably pure pool of mitochondria that are still intact and coupled. Here, we describe a fast and simple method for the purification of mammalian mitochondria relying on isopycnic density gradient centrifugation. We describe specific steps that should be taken into consideration when functional mitochondria from different tissues should be isolated. This protocol is suitable for the analysis of many aspects of the organelle's structure and function.
Collapse
Affiliation(s)
- Dieu Hien Rozsivalova
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
| | - Milica Popovic
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
| | - Harshita Kaul
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany.
| |
Collapse
|
4
|
Fahlbusch P, Nikolic A, Hartwig S, Jacob S, Kettel U, Köllmer C, Al-Hasani H, Lehr S, Müller-Wieland D, Knebel B, Kotzka J. Adaptation of Oxidative Phosphorylation Machinery Compensates for Hepatic Lipotoxicity in Early Stages of MAFLD. Int J Mol Sci 2022; 23:ijms23126873. [PMID: 35743314 PMCID: PMC9224893 DOI: 10.3390/ijms23126873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 12/10/2022] Open
Abstract
Alterations in mitochondrial function are an important control variable in the progression of metabolic dysfunction-associated fatty liver disease (MAFLD), while also noted by increased de novo lipogenesis (DNL) and hepatic insulin resistance. We hypothesized that the organization and function of a mitochondrial electron transport chain (ETC) in this pathologic condition is a consequence of shifted substrate availability. We addressed this question using a transgenic mouse model with increased hepatic insulin resistance and DNL due to constitutively active human SREBP-1c. The abundance of ETC complex subunits and components of key metabolic pathways are regulated in the liver of these animals. Further omics approaches combined with functional assays in isolated liver mitochondria and primary hepatocytes revealed that the SREBP-1c-forced fatty liver induced a substrate limitation for oxidative phosphorylation, inducing enhanced complex II activity. The observed increased expression of mitochondrial genes may have indicated a counteraction. In conclusion, a shift of available substrates directed toward activated DNL results in increased electron flows, mainly through complex II, to compensate for the increased energy demand of the cell. The reorganization of key compounds in energy metabolism observed in the SREBP-1c animal model might explain the initial increase in mitochondrial function observed in the early stages of human MAFLD.
Collapse
Affiliation(s)
- Pia Fahlbusch
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Aleksandra Nikolic
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Sonja Hartwig
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Sylvia Jacob
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
| | - Ulrike Kettel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
| | - Cornelia Köllmer
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
| | - Hadi Al-Hasani
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
- Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Stefan Lehr
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Dirk Müller-Wieland
- Clinical Research Centre, Department of Internal Medicine I, University Hospital Aachen, 52074 Aachen, Germany;
| | - Birgit Knebel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
- Correspondence: ; Tel.: +49-211-3382-536
| | - Jörg Kotzka
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|