1
|
Mazzuoli MV, van Raaphorst R, Martin L, Bock F, Thierry A, Marbouty M, Waclawiková B, Stinenbosch J, Koszul R, Veening JW. HU promotes higher order chromosome organization and influences DNA replication rates in Streptococcus pneumoniae. Nucleic Acids Res 2025; 53:gkaf312. [PMID: 40263708 PMCID: PMC12014288 DOI: 10.1093/nar/gkaf312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/17/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025] Open
Abstract
Nucleoid-associated proteins (NAPs) are crucial for maintaining chromosomal compaction and architecture, and are actively involved in DNA replication, recombination, repair, and gene regulation. In Streptococcus pneumoniae, the role of the highly conserved NAP HU in chromosome conformation has not yet been investigated. Here, we use a multi-scale approach to explore HU's role in chromosome conformation and segregation dynamics. By combining superresolution microscopy and whole-genome-binding analysis, we describe the nucleoid as a dynamic structure where HU binds transiently across the entire nucleoid, with a preference for the origin of replication over the terminus. Reducing cellular HU levels impacts nucleoid maintenance and disrupts nucleoid scaling with cell size, similar to the distortion caused by fluoroquinolones, supporting its requirement for maintaining DNA supercoiling. Furthermore, in cells lacking HU, the replication machinery is misplaced, preventing cells from initiating and proceeding with ongoing replication. Chromosome conformation capture coupled to deep sequencing (Hi-C) revealed that HU is required to maintain cohesion between the two chromosomal arms, similar to the structural maintenance of chromosome complex. Together, we show that by promoting long-range chromosome interactions and supporting the architecture of the domain encompassing the origin, HU is essential for chromosome integrity and the intimately related processes of replication and segregation.
Collapse
Affiliation(s)
- Maria-Vittoria Mazzuoli
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Renske van Raaphorst
- Department of Molecular Microbiology, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, 9747, The Netherlands
| | - Louise S Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Florian P Bock
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Agnès Thierry
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, 75015, France
| | - Martial Marbouty
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, 75015, France
| | - Barbora Waclawiková
- Department of Molecular Microbiology, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, 9747, The Netherlands
| | - Jasper Stinenbosch
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Romain Koszul
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, 75015, France
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| |
Collapse
|
2
|
Girard F, Even A, Thierry A, Ruault M, Meneu L, Larrous P, Garnier M, Adiba S, Taddei A, Koszul R, Cournac A. Parasitic plasmids are anchored to inactive regions of eukaryotic chromosomes through a nucleosome signal. EMBO J 2025; 44:2134-2156. [PMID: 40016420 PMCID: PMC11962162 DOI: 10.1038/s44318-025-00389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 01/21/2025] [Accepted: 01/31/2025] [Indexed: 03/01/2025] Open
Abstract
Natural plasmids are common in prokaryotes, but few have been documented in eukaryotes. The natural 2µ plasmid present in the yeast Saccharomyces cerevisiae is one of these best-characterized exceptions. This highly stable genetic element has coexisted with its host for millions of years, faithfully segregating at each cell division through a mechanism that remains unclear. Using proximity ligation methods (such as Hi-C, Micro-C) to map the contacts between 2µ plasmid and yeast chromosomes under dozens of different biological conditions, we found that the plasmid is tethered preferentially to regions with low transcriptional activity, often corresponding to long, inactive genes. These contacts do not depend on common chromosome-structuring factors, such as members of the structural maintenance of chromosome complexes (SMC) but depend on a nucleosome-encoded signal associated with RNA Pol II depletion. They appear stable throughout the cell cycle and can be established within minutes. This chromosome hitchhiking strategy may extend beyond the 2µ plasmid/S. cerevisiae pair, as suggested by the binding pattern of the natural eukaryotic plasmid Ddp5 along silent chromosome regions of the amoeba Dictyostelium discoideum.
Collapse
Affiliation(s)
- Fabien Girard
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015, Paris, France
- Sorbonne Université, Collège Doctoral, F-75005, Paris, France
- Département de Biologie, Université Paris-Saclay, ENS Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Antoine Even
- Institut Curie, PSL University, Sorbonne Université, CNRS UMR 3664, Nuclear Dynamics, Paris, France
| | - Agnès Thierry
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015, Paris, France
| | - Myriam Ruault
- Institut Curie, PSL University, Sorbonne Université, CNRS UMR 3664, Nuclear Dynamics, Paris, France
| | - Léa Meneu
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015, Paris, France
- Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Pauline Larrous
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015, Paris, France
- Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Mickaël Garnier
- Institut Curie, PSL University, Sorbonne Université, CNRS UMR 3664, Nuclear Dynamics, Paris, France
| | - Sandrine Adiba
- Institut de Biologie de l'Ecole Normale Supérieure, Département de Biologie, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Angela Taddei
- Institut Curie, PSL University, Sorbonne Université, CNRS UMR 3664, Nuclear Dynamics, Paris, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015, Paris, France.
| | - Axel Cournac
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015, Paris, France.
| |
Collapse
|
3
|
Legrand S, Saifudeen A, Bordelet H, Vernerey J, Guille A, Bignaud A, Thierry A, Acquaviva L, Gaudin M, Sanchez A, Johnson D, Friedrich A, Schacherer J, Neale MJ, Borde V, Koszul R, Llorente B. Absence of chromosome axis protein recruitment prevents meiotic recombination chromosome-wide in the budding yeast Lachancea kluyveri. Proc Natl Acad Sci U S A 2024; 121:e2312820121. [PMID: 38478689 PMCID: PMC10962940 DOI: 10.1073/pnas.2312820121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/24/2024] [Indexed: 03/27/2024] Open
Abstract
Meiotic recombination shows broad variations across species and along chromosomes and is often suppressed at and around genomic regions determining sexual compatibility such as mating type loci in fungi. Here, we show that the absence of Spo11-DSBs and meiotic recombination on Lakl0C-left, the chromosome arm containing the sex locus of the Lachancea kluyveri budding yeast, results from the absence of recruitment of the two chromosome axis proteins Red1 and Hop1, essential for proper Spo11-DSBs formation. Furthermore, cytological observation of spread pachytene meiotic chromosomes reveals that Lakl0C-left does not undergo synapsis. However, we show that the behavior of Lakl0C-left is independent of its particularly early replication timing and is not accompanied by any peculiar chromosome structure as detectable by Hi-C in this yet poorly studied yeast. Finally, we observed an accumulation of heterozygous mutations on Lakl0C-left and a sexual dimorphism of the haploid meiotic offspring, supporting a direct effect of this absence of meiotic recombination on L. kluyveri genome evolution and fitness. Because suppression of meiotic recombination on sex chromosomes is widely observed across eukaryotes, the mechanism for recombination suppression described here may apply to other species, with the potential to impact sex chromosome evolution.
Collapse
Affiliation(s)
- Sylvain Legrand
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| | - Asma Saifudeen
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| | - Hélène Bordelet
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris75015, France
| | - Julien Vernerey
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| | - Arnaud Guille
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| | - Amaury Bignaud
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris75015, France
| | - Agnès Thierry
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris75015, France
| | - Laurent Acquaviva
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| | - Maxime Gaudin
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| | - Aurore Sanchez
- Institut Curie, Paris Sciences and Lettres University, Sorbonne Université, CNRS UMR 3244, Dynamics of Genetic Information, Paris75005, France
| | - Dominic Johnson
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, BrightonBN1 9RH, United Kingdom
| | - Anne Friedrich
- Université de Strasbourg, CNRS, Génétique moléculaire, génomique, microbiologie UMR 7156, Strasbourg67000, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, Génétique moléculaire, génomique, microbiologie UMR 7156, Strasbourg67000, France
| | - Matthew J. Neale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, BrightonBN1 9RH, United Kingdom
| | - Valérie Borde
- Institut Curie, Paris Sciences and Lettres University, Sorbonne Université, CNRS UMR 3244, Dynamics of Genetic Information, Paris75005, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris75015, France
| | - Bertrand Llorente
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| |
Collapse
|
4
|
Bignaud A, Cockram C, Borde C, Groseille J, Allemand E, Thierry A, Marbouty M, Mozziconacci J, Espéli O, Koszul R. Transcription-induced domains form the elementary constraining building blocks of bacterial chromosomes. Nat Struct Mol Biol 2024; 31:489-497. [PMID: 38177686 PMCID: PMC10948358 DOI: 10.1038/s41594-023-01178-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/10/2023] [Indexed: 01/06/2024]
Abstract
Transcription generates local topological and mechanical constraints on the DNA fiber, leading to the generation of supercoiled chromosome domains in bacteria. However, the global impact of transcription on chromosome organization remains elusive, as the scale of genes and operons in bacteria remains well below the resolution of chromosomal contact maps generated using Hi-C (~5-10 kb). Here we combined sub-kb Hi-C contact maps and chromosome engineering to visualize individual transcriptional units. We show that transcriptional units form discrete three-dimensional transcription-induced domains that impose mechanical and topological constraints on their neighboring sequences at larger scales, modifying their localization and dynamics. These results show that transcriptional domains constitute primary building blocks of bacterial chromosome folding and locally impose structural and dynamic constraints.
Collapse
Affiliation(s)
- Amaury Bignaud
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Charlotte Cockram
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Céline Borde
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Justine Groseille
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Eric Allemand
- INSERM-U1163, Unité mécanismes cellulaires et moléculaires des désordres hématologiques et implications thérapeutiques, Institut Imagine, Paris, France
| | - Agnès Thierry
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Martial Marbouty
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Julien Mozziconacci
- Laboratoire Structure et Instabilité des Génomes, UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
| | - Olivier Espéli
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France.
| | - Romain Koszul
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France.
| |
Collapse
|
5
|
Serizay J, Matthey-Doret C, Bignaud A, Baudry L, Koszul R. Orchestrating chromosome conformation capture analysis with Bioconductor. Nat Commun 2024; 15:1072. [PMID: 38316789 PMCID: PMC10844600 DOI: 10.1038/s41467-024-44761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024] Open
Abstract
Genome-wide chromatin conformation capture assays provide formidable insights into the spatial organization of genomes. However, due to the complexity of the data structure, their integration in multi-omics workflows remains challenging. We present data structures, computational methods and visualization tools available in Bioconductor to investigate Hi-C, micro-C and other 3C-related data, in R. An online book ( https://bioconductor.org/books/OHCA/ ) further provides prospective end users with a number of workflows to process, import, analyze and visualize any type of chromosome conformation capture data.
Collapse
Affiliation(s)
- Jacques Serizay
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France.
| | - Cyril Matthey-Doret
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
- Swiss Data Science Center, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Amaury Bignaud
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Lyam Baudry
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
- Université de Lausanne, Center for Integrative Genomics, Quartier Sorge, 1015, Lausanne, Switzerland
| | - Romain Koszul
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| |
Collapse
|
6
|
Li Z, Portillo-Ledesma S, Schlick T. Techniques for and challenges in reconstructing 3D genome structures from 2D chromosome conformation capture data. Curr Opin Cell Biol 2023; 83:102209. [PMID: 37506571 PMCID: PMC10529954 DOI: 10.1016/j.ceb.2023.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Chromosome conformation capture technologies that provide frequency information for contacts between genomic regions have been crucial for increasing our understanding of genome folding and regulation. However, such data do not provide direct evidence of the spatial 3D organization of chromatin. In this opinion article, we discuss the development and application of computational methods to reconstruct chromatin 3D structures from experimental 2D contact data, highlighting how such modeling provides biological insights and can suggest mechanisms anchored to experimental data. By applying different reconstruction methods to the same contact data, we illustrate some state-of-the-art of these techniques and discuss our gene resolution approach based on Brownian dynamics and Monte Carlo sampling.
Collapse
Affiliation(s)
- Zilong Li
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, 10003, NY, USA; Simons Center for Computational Physical Chemistry, New York University, 24 Waverly Place, Silver Building, New York, NY, 10003, USA
| | - Stephanie Portillo-Ledesma
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, 10003, NY, USA; Simons Center for Computational Physical Chemistry, New York University, 24 Waverly Place, Silver Building, New York, NY, 10003, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, 10003, NY, USA; Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, 10012, NY, USA; New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Room 340, Geography Building, 3663 North Zhongshan Road, Shanghai, 200122, China; Simons Center for Computational Physical Chemistry, New York University, 24 Waverly Place, Silver Building, New York, NY, 10003, USA.
| |
Collapse
|