1
|
Gosset-Erard C, Han G, Kyrko D, Hueber A, Nay B, Eparvier V, Touboul D. Structural characterization of N-acyl-homoserine lactones from bacterial quorum sensing using LC-MS/MS analyses after Paternò-Büchi derivatization in solution. Anal Bioanal Chem 2024; 416:5431-5443. [PMID: 38842688 DOI: 10.1007/s00216-024-05355-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
Bacterial quorum sensing is a chemical language allowing bacteria to interact through the excretion of molecules called autoinducers, like N-acyl-homoserine lactones (AHLs) produced by Gram-negative Burkholderia and Paraburkholderia bacteria known as opportunistic pathogens. The AHLs differ in their acyl-chain length and may be modified by a 3-oxo or 3-hydroxy substituent, or C = C double bonds at different positions. As the bacterial signal specificity depends on all of these chemical features, their structural characterization is essential to have a better understanding of the population regulation and virulence phenomenon. This study aimed at enabling the localization of the C = C double bond on such specialized metabolites while using significantly lower amounts of biological material. The approach is based on LC-MS/MS analyses of bacterial extracts after in-solution derivatization by a photochemical Paternò-Büchi reaction, leading to the formation of an oxetane ring and subsequently to specific fragmentations when performing MS/MS experiments. The in-solution derivatization of AHLs was optimized on several standards, and then the matrix effect of bacterial extracts on the derivatization was assessed. As a proof of concept, the optimized conditions were applied to a bacterial extract enabling the localization of C = C bonds on unsaturated AHLs.
Collapse
Affiliation(s)
- Clarisse Gosset-Erard
- Université Paris-Saclay, CNRS, Institut de Chimie Des Substances Naturelles, UPR 2301, 91198, Gif-Sur-Yvette, France
| | - Guanghui Han
- Laboratoire de Synthèse Organique (LSO), CNRS UMR 7652, Ecole Polytechnique, ENSTA, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Dimitra Kyrko
- Université Paris-Saclay, CNRS, Institut de Chimie Des Substances Naturelles, UPR 2301, 91198, Gif-Sur-Yvette, France
| | - Amandine Hueber
- Université Paris-Saclay, CNRS, Institut de Chimie Des Substances Naturelles, UPR 2301, 91198, Gif-Sur-Yvette, France
| | - Bastien Nay
- Laboratoire de Synthèse Organique (LSO), CNRS UMR 7652, Ecole Polytechnique, ENSTA, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Véronique Eparvier
- Université Paris-Saclay, CNRS, Institut de Chimie Des Substances Naturelles, UPR 2301, 91198, Gif-Sur-Yvette, France
| | - David Touboul
- Université Paris-Saclay, CNRS, Institut de Chimie Des Substances Naturelles, UPR 2301, 91198, Gif-Sur-Yvette, France.
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France.
| |
Collapse
|
2
|
Chen C, Li R, Wu H. Recent progress in the analysis of unsaturated fatty acids in biological samples by chemical derivatization-based chromatography-mass spectrometry methods. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123572. [PMID: 36565575 DOI: 10.1016/j.jchromb.2022.123572] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Unsaturated fatty acids (UFAs) are essential fatty acids that execute various biological functions in the human body. Therefore, the qualitative and quantitative analysis of UFAs in biological samples can help to clarify their roles in the occurrence and development of diseases, so to reveal the mechanisms of pathogenesis and potential drug intervention strategies. Chromatography-mass spectrometry is one of the most commonly used techniques for the analysis of UFAs in biological samples. However, due to factors such as the complex structural information of UFAs (the number and specific location of CC double bonds) and the low concentration of UFAs in biological samples, it is still difficult to conduct accurate qualitative and/or quantitative studies of UFAs in complex biological samples. In recent years, the integration and application of chemical derivatization and chromatography-mass spectrometry has been widely used in the detection of UFAs. Based on this overview, we reviewed recent developments and application progress for chemical derivatization-based chromatography-mass spectrometry methods for the qualitative and/or quantitative analysis of UFAs in biological samples over the past ten years. Potential trends for the design and improvement of novel derivatization reagents were proposed.
Collapse
Affiliation(s)
- Chang Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Ruijuan Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Province Key Laboratory of Chinese Medicinal Formula & Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|